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Scroll waves in isotropic excitable media: Linear instabilities, bifurcations, and restabilized states

HervéHenry and Vincent Hakim
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Scroll waves are three-dimensional analogs of spiral waves. The linear stability spectrum of untwisted and
twisted scroll waves is computed for a two-variable reaction-diffusion model of an excitable medium. Different
bands of modes are seen to be unstable in different regions of parameter space. The corresponding bifurcations
and bifurcated states are characterized by performing direct numerical simulations. In addition, computations
of the adjoint linear stability operator eigenmodes are also performed and serve to obtain a number of matrix
elements characterizing the long-wavelength deformations of scroll waves.
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I. INTRODUCTION

Depolarization waves in cardiac muscle, oxidation wav
in the Belousov-Zhabotinsky~BZ! chemical medium or a
the surface of certain metal catalyst and cAMP waves
colonies of slime molds are different examples of wa
propagation in excitable media@1#. They can be described i
similar mathematical terms although the underlying p
cesses are of a very different nature. In a two-dimensio
~2D! or quasi-two-dimensional situation, the propagation
spiral waves has been observed in these three cases as
as in other excitable media@1,2#. Aside from their intrinsic
scientific interest, the potential role of these remarka
waves in cardiac arrhythmias and fibrillation@3# has moti-
vated detailed studies of their properties during the past
decades. In particular, the mechanisms of different insta
ties have been intensively investigated as well as their lo
tions determined in parameter space of simple models@4,5#
and of experiments@6#.

The potential relevance to cardiac dysfunction of scr
waves, the three-dimensional analogs of spirals, has
been emphasized@7# but their dynamics is still less thor
oughly analyzed. Visualization of the BZ reaction in 3D ge
@8,9# has confirmed the existence of these complex wav
Numerical simulations have revealed that they are pron
instabilities in several parameter regimes@10–13#. In order
to more systematically analyze the different possible ins
bilities, we report here the result of computations of the f
linear stability spectrum of a straight scroll wave in a simp
two-variable model of an excitable medium. This enables
to follow the different modes of deformation of a scroll wa
and to investigate which type of modes become unstabl
different regions of parameter space. The modes of the
joint operator are also determined in order to compute
value of several coefficients given by matrix elements and
check proposed analytic relations. In addition, direct num
cal simulations are performed to investigate the nonlin
fate of the different instabilities and to provide a detail
characterization of the restabilized bifurcated states~when
they exist!.

In Sec. II, we define the studied two-variable reacti
model and explain our numerical methods. Some gen
properties of spiral waves are also recalled. Then, we
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consider in Sec. III a straight untwisted scroll wave. It is t
simplest~i.e., z-independent! extension in the third (z-) di-
mension of a two-dimensional (x-y) spiral wave. At the lin-
ear level, two possible types of instabilities are found. Mod
with positive real parts can be observed on the transla
bands, which correspond toz-dependent translations of th
2D spiral in the differentx-y planes, or on the meande
bands, which come fromz deformations of the 2D spira
meander modes. At the nonlinear level, the translation b
instability gives rise to a scroll wave with a continuous
extending core@11,12# and does not lead to a restabilize
nonlinear state. We confirm that this type of instability
directly related@14# to the drift direction of a 2D spiral in an
external field. In contrast, the meander band type of insta
ity @15# generally restabilizes in a distorted scroll wave a
no simple relation to 2D spiral drift is observed.

In Sec. IV, we consider twisted scroll waves. A 3D stea
wave is built by rotating~i.e., twisting! the 2D spiral around
its rotation center as one translates it along thez direction.
We find that twist exceeding a definite threshold can lead
the appearance of unstable modes in the translation band
the scroll wave. This ‘‘sproing’’@10# instability is seen to
take place a finite wave vector away from the scroll wa
translation symmetry mode. We provide analytical argume
that show that this very generally results from 3D rotation
invariance in an isotropic medium. Nonlinear developme
of this instability when a single unstable mode is pres
results in a restabilized helical wave, as previously descri
@10#. Properties of these nonlinear states are computed
compared with the linear characteristics~wave vector, fre-
quency! of the sproing instability. When several unstab
modes are present in the simulation box, the scroll wave c
filament takes a more complex shape that is found to tra
like a nonlinear wave of constant shape in the vertical dir
tion. Three appendices provide the details of our numer
algorithms, a derivation of a general formula for spiral dr
in an external field and useful ribbon geometry formulas
fourth one explains the relation between the present calc
tions and previously derived averaged equations for the
tion of a weakly curved and twisted scroll wave@16,12#.

The results of our linear stability analysis have previou
been briefly described in Ref.@17#.
©2002 The American Physical Society35-1
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II. METHODS AND GENERAL RESULTS

A. Reaction-diffusion model

Two-variable reaction-diffusion systems have been sho
to describe semiquantitatively spiral waves dynamics and
‘‘generic’’ features. They have been used in various conte
since their original introduction@18# as a simplification of
Hodgkin-Huxley dynamics. The analysis of such a sim
model appears in any case as a useful first step before g
to a more complicated description if required. We thus f
low this classic path and take for the excitable medium
namics

] tu5¹2u1 f ~u,v !/e, ~1!

] tv5g~u,v !. ~2!

We only consider the singly diffusive case, the most relev
to cardiac physiology. For definiteness, we also choose r
tion terms f (u,v)5u(12u)@u2(v1b)/a#, g(u,v)5u2v
as proposed in Ref.@19#. This permits fast direct simulation
and tests of our numerics by comparison with previous
sults for spiral waves. The 2D-spiral bifurcation diagram
this model is shown in Fig. 1 for variable values of the p
rametersa andb at a fixed value ofe50.025. The meande
instability line (]M with the notation of@5#! is plotted with
its ‘‘large core’’ branch at smaller values ofa than its ‘‘small
core’’ branch. The crossing line that separates meander
jectories with outward petals from those with inward pet
is also drawn as well as the diverging core existence bou
ary of spiral waves (]R).

In the following, the stability and dynamics of scro
waves are analyzed at several points along the lineb50.01,
asa varies and crosses the different boundaries.

FIG. 1. Spiral bifurcation diagram for Eqs.~1! and ~2! with e
50.025 and the reaction terms of Ref.@19#. The bold line]M is the
meander threshold instability line and separates steadily rota
spirals from meandering spirals~aboveb50.02 the thin line de-
notes our less accurate determination of]M ). The line]R marks
the boundary of spiral wave existence on the left of]R the wave tip
retracts~see, e.g., Ref.@14#!. The symbols along the lineb50.01
denotes the different parameters at which scroll waves are stu
in the present work. Stars~!! represent stable scroll waves; cross
(3) and pluses (1) meander-unstable scroll waves; circles~s!,
and (d) translation-band-unstable scroll waves. 2D meander
spirals are represented by (1) and ~s!.
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B. Numerical strategy

In order to obtain the steady scroll waves and comp
their stability spectrum, Eqs.~1! and~2! are written in cylin-
drical coordinates withu and v functions of r , f5u2vt
2twz,t, andz,

~] t12tw]fz
2 2]zz

2 !u5~v]f1tw
2 ]ff

2 1¹2D
2 !u1 f ~u,v !/e,

~3!

] tv5v]fv1g~u,v !. ~4!

1. Steady states

A steady scroll wave for a given imposed twisttw is a
time-independent solution of Eqs.~3! and ~4! with
u(r ,f,t,z)5u0(r ,f) andv(r ,f,t,z)5v0(r ,f) and rotation
frequencyv5v1,

~¹2D
2 1v1]f1tw

2 ]ff
2 !u01 f ~u0 ,v0!/e50, ~5!

v1]fv01g~u0 ,v0!50. ~6!

This nonlinear fixed-point problem for the functionu0 , v0
and nonlinear eigenvaluev1 is solved by using Newton’s
method after discretization of Eqs.~5! and~6!, as detailed in
Appendix A. It should be noted that Eqs.~5! and ~6! are
purely two-dimensional due to the scroll wave translati
symmetry along thez axis in the introduced coordinates.

2. Linear stability

Once a steady scroll wave is obtained, one can linea
Eqs.~3! and~4! around it. Invariance of Eqs.~3! and~4! and
of the steady state by translation along thez direction~in the
introduced twisted rotating frame! leads to the decomposi
tion of a general perturbation depending on the three spa
coordinates on its Fourier components along thez axis. We
thus consider perturbations under the formu5u0
1 exp@s(kz)t 2 ikzz#u1(r,f), v 5 v0 1 exp@s(kz)t2ikzz#v1(r,f).
The linear equations obeyed by (u1 ,v1) and the~complex!
growth rates(kz) read,

su15~2kz
212i twkz]f!u11~v1]f1tw

2 ]ff
2 1¹2D

2 !u1

1@]uf ~u0 ,v0!u11]v f ~u0 ,v0!v1#/e, ~7!

sv15v1]fv11]ug~u0 ,v0!u11]vg~u0 ,v0!v1 , ~8!

or symbolically,

s~kz!S u1

v1
D 5LkzS u1

v1
D . ~9!

So in a second step, the (;10) eigenvalues of largest rea
parts ofLkz

are precisely determined~for given kz and tw)
using an iterative algorithm@20# detailed in Appendix A. The
whole numerical procedure is quite similar to the spiral l
ear stability analysis of Ref.@21# and extends it to 3D. It
should be noted that the twist ratetw can be prescribed a
will so the procedure is not confined to weak twist~of
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course, for too large a twist, a steady scroll may no lon
exist and the Newton steady state finding procedure fail
converge!.

Two points are worth emphasizing:
Taking a Fourier transform has eliminated thez direction

so Eqs.~7! and ~8! are purely two-dimensional~but kz de-
pendent! as the steady state equations~5! and ~6!,

Correlatively, each mode of the 2D spiral is replaced b
band of modes indexed by the wave vectorkz .

Some general properties of the spectrum can be note
this stage.

For zero twist, Eqs.~7! and~8! depend only onkz
2 so the

spectrum bands are even functions ofkz . Moreover,Lkz
is a

real operator and its complex eigenvalues come in comp
conjugate~c.c.! pairs. So, bands of complex modes al
come in complex conjugate pairs.

For nonzero twist (twÞ0), these symmetries no longe
hold. It only remains true thatLkz

5L* 2kz
. So bands of com-

plex modes can be grouped in pairss1(kz),s2(kz) with
s2(kz)5s1* (2kz).

3. Direct numerical simulations and instantaneous
filament definition

In order to determine the bifurcation type and the fate
each instabilities, we performed direct numerical simulatio
of Eqs. ~1! and ~2! as explained in Appendix A. In two di
mensions, it is usual to define the spiral tip as the intersec
point of two ~somewhat arbitrary! particular level linesu
5utip ,v5v t ip . The spiral tip trajectory is then a convenie
way to visualize the spiral dynamics and its core instabiliti
Similarly in 3D, we choose here to define the instantane
filament as the intersection line of the two particular lev
surfacesu5utip50.5 andv5v t ip50.75(0.5a2b). It can be
thought of as the line of spiral tips in the differentx-y plane.

C. Special eigenmodes

In the 2D case, there are five dominant modes of sp
dynamics in the simple case described by Eqs.~1! and ~2!
@22#:

One neutral mode withs50, the rotation mode, which
comes from the rotational invariance of Eqs.~3! and ~4!.

Two complex conjugate purely imaginary modes withs
56 iv1, the translation modes, coming from the translat
invariance of the starting equations~1! and ~2!.

Two complex conjugate modes, the meander modes,
responding to the oscillatory meander instability, the real p
of which crosses zero on the meander instability line.

In the following, the five bands of modes originating fro
these special modes are found to play the most impor
role in scroll wave dynamics in the sense that they have
largest real parts and that each instability of a scroll wa
can be ascribed to one of these bands~i.e., the modes on a
part of that particular band acquire a positive real part!.

Thus, before proceeding, it is worth recalling the expr
sion of these symmetry eigenmodes for spirals@21# and their
straightforward generalization for scroll waves.

The rotation mode is the simplest. Differentiation of Eq
~5! and ~6! directly shows that (]fu0 ,]fv0), the rotation
04623
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mode, is a solution of Eqs.~7! and ~8! for kz50 ands50.
The eigenmodes associated with invariance under (x,y)

translations of the spiral rotation center are less straight
wardly obtained because the spiral is a time-independent
lution in a rotating frame@with (x8,y8) coordinates#. A
steady spiral rotating around the origin is given by

U0@x8,y8#5U0@cos~v1t !x1sin~v1t !y,2sin~v1t !x

1cos~v1t !y#. ~10!

The corresponding spiral rotating around the point (x0 ,y0) is
then

U0@cos~v1t !~x2x0!1sin~v1t !~y2y0!,2sin~v1t !~x2x0!

1cos~v1t !~y2y0!#.

Using the (x8,y8) rotating coordinates, this translated spir
reads,

U0@x82x0 cos~v1t !2y0 sin~v1t !,y81x0 sin~v1t !

2y0 cos~v1t !#

5U0Fx82S x02 iy0

2
exp~ iv1t !1c.c.D ,y8

2S i
x02 iy0

2
exp~ iv1t !1c.c.D G . ~11!

Expansion of Eq.~11! for small (x0 ,y0) gives the expression
of the translation modes

S ut

v t
D 5S ~]x81 i ]y8!u0

~]x81 i ]y8!v0
D 5exp~ if!S ] ru01 i ]fu0 /r

] rv01 i ]fv0 /r D
~12!

with eigenvalueiv1, and the complex conjugate eigenvect
with eigenvalue2 iv1.

This computation immediately generalizes to untwist
scroll waves. This is also the case for twisted scroll wav
but one should recall that Eqs.~5! and ~6! are written in a
referential that rotates in time but also as one moves al
the z axis. This modifies the exponential factor in Eq.~11!
which becomes exp(iv1t1twz) to include thez rotation. So,
for a twisted scroll wave the translation mode (ut ,v t) is an
eigenvector ofLkz52tw

with eigenvalue iv1. The other

~complex conjugate! translation eigenvector (ut* ,v t* ) is as-
sociated with the eigenvalue2 iv1 of the nowdifferent lin-
ear operatorLkz5tw

.
A direct algebraic proof of these facts can be given.

ones defines the two operators

T[exp~ if!~] r1 i /r ]f!,

M[v1]f1tw
2 ]ff

2 1¹2D
2 , ~13!

a direct computation gives the commutators

@T,M #52 iv1T2tw
2 ~112i ]f!T,
5-3
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FIG. 2. Contour plots of the translation eigen
mode. ~a! u-component modulus,~b! v-compo-
nent modulus, and of the corresponding left e
genvector, ~c! u-component modulus, ~d!
v-component modulus. The maximum value
the fields is set independently foru andv equal to
1, and the contours are plotted for~a! u50.01,
0.05, 0.1, 0.3, 0.4, 0.5, 0.6, and 0.7,~b! v50.01,
0.05, 0.1, 0.2, 0.4, 0.6, and 0.8,~c! and ~d! u,v
50.0001, 0.001, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, a
0.9. The parameter values area50.44, b50.01,
and e50.025. The pulsation of the steady rota
ing spiral isv51.1612. The circles represent th
limit of the simulation box.
te
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@T,]f#52 iT. ~14!

With these notations, the fixed-point equations readMu0
1 f (u0 ,v0)50, v1]fv01g(u0 ,v0)50. Action of T on
these two equations givesTMu01]uf Tu01]v f Tv0
50,v1T]fv01]ug Tu01]vg Tv050. Commutations ofT
and M ~in the first one! and T and ]f ~in the second one!
using Eq.~14! directly show that (ut ,v t)5(Tu0 ,Tv0) satis-
fies Eqs.~7! and ~8! with s51 iv1 andkz52tw .

D. Left eigenvectors and scalar product

The linear stability computation can be extended to de
mine the left eigenvectors ofLkz

We have found it worth in
particular to compute the left eigenvectors of the 2D sp
stability operatorL ~i.e., Lkz50 for tw50) corresponding to
the translation and rotation modes since they often appea
perturbation calculation@16,12# ~for examples, see Sec
III A 1 and Appendix D!.

We simply define the scalar product between a left (ũ,ṽ)
and right (ur ,v r) two-component function by integratio
over the whole 2D space as^ũ,ur&1^ṽ,v r&, where

^ f ,g&[E E drdfr f ~r ,f!g~r ,f!. ~15!

The left eigenmodes ofL thus obey
04623
r-
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sũ15~2v1]f1¹2D
2 !ũ11]uf ~u0 ,v0!ũ1 /e

1]ug~u0 ,v0!ṽ1 , ~16!

s ṽ152v1]fṽ11]v f ~u0 ,v0!ũ1 /e1]vg~u0 ,v0!ṽ1 .
~17!

The result of one such computation for the left translat
eigenmode (ũt ,ṽ t) @the solution (ũ1 ,ṽ1) for s5 iv1# is
shown in Fig. 2. In contrast to the translation mode (ut ,v t),
the left eigenmode (ũt ,ṽ t) quickly decreases away from th
spiral core as argued in Ref.@12# and explicitly obtained in
the free-boundary limit@14,23# ~but opposite to what is sup
posed in Ref.@16#!. This also holds for the left rotation mod
(ũf ,ṽf) @the solution (ũ1 ,ṽ1) for s50# as shown in Fig. 3.

As a consequence, the scalar product~15! between these
left functions (ũ,ṽ) and any right function (ur ,v r) ~even
slowly increasing! is well defined.1 We do not find it useful
to include a time integration in the scalar product as
@16,12#.

1The fast decay of the left eigenmodes makes the space inte
tion converge without any additional factor. Adding one such ex
factor as suggested in Ref.@16# would actually make all the scala
product vanish.
5-4
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FIG. 3. Contour plots of the rotation eigen
mode. ~a! u-component modulus, ~b!
v-component modulus, and of the correspondi
left eigenvector,~c! u-component modulus,~d!
v-component modulus. The maximum value
the fields is set equal to 1 and the contours a
plotted for~a! u50.001, 0.1, 0.3, 0.5, and 0.7,~b!
v50.001, 0.1, 0.2, 0.4, 0.6, and 0.8,~c! and~d! u,
v50., 0.001, 0.01, 0.1, 0.3, 0.5, 0.7, and 0.9. P
rameters are the same as those in Fig. 2.
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III. UNTWISTED FILAMENTS

We begin with the simplest case of scroll waves with
twist (tw50). In this case, the steady scroll equations~5!
and~6! are clearly identical to those of a 2D spiral. We ta
as an example the parameter valuea50.9, b50.01 ~and e
50.025). A steady spiral/scroll wave is found for a rotati
frequencyv151.769. The linear spectrum of modes arou

FIG. 4. ~a! Real and~b! imaginary parts of the growth rat
s(kz) as a function of the wave numberkz for the translation
(1), rotation (d), and meander (s) bands. The parameter value
area50.9, b50.01, ande50.025. Figure 4~a! shows that the me-
ander mode atkz50 is stable and that the growth rate decreases
the meander band withkz . The translation mode is also restabilize
for finite values ofkz . The translation and meander bands are w
approximated respectively bys t(kz)5 i1.7691(20.651 i0.61)kz

2

and sm(kz)520.34111 i1.7201(20.251 i0.01)kz
2 . The value of

s t(0) is in good agreement with the independently determined
sation of the steady scroll wavev151.769.
04623
this steady scroll is plotted in Fig. 4~only the upper quadran
upper kz.0,Im(s).0 is shown since the other quadran
can be deduced by parity and complex conjugation!. The five
translation, rotation, and meander modes of the spiral w
stand atkz50. The steady spiral is stable as shown by t
negative real parts of the meander modes. As stated ab
the spectrum around the scroll wave is organized in sev
bands of modes which originates from the spiral modes
kz50. Only the five less stable bands are shown in Fig. 4.
these parameter values, extension to the third dimension
not bring any instability~at least at the linear level! since as
seen on Fig. 4 the real part ofs(kz) becomes more negativ
on each band askz increases.

For other parameter values, a straight scroll wave c
however, be unstable while 2D spiral are stable. This
happen in two different ways. Depending on position in p
rameter space, either the translation or the meander b
become unstable forkzÞ0. We examine these two cases
turn in the following two subsections.

A. Translation band instability

The translation bands can have unstable modes fokz
Þ0 while the 2D spirals are stable. An example of this ph
nomenon is shown in Fig. 5 fora50.44, b50.01, ande
50.025. A qualitatively similar spectrum is obtained for a
points in Fig. 1 denoted by filled dots (d) near the large core
spiral existence boundary]R. As seen in Fig. 5, the instabil
ity takes place for smallkz as soon askz is nonzero. It cor-
responds to the ‘‘negative line tension’’ instability of Re

n

ll

l-
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@12#. We show below that the curvature of the translati
modes atkz50 is given by the spiral drift coefficients in a
external field. So, this translation band instability is direc
related to the fact that 2D spiral drifts opposite to an appl
external field in this parameter region.

1. Long-wavelength stability and 2D spiral drift
in an external field

As recalled and shown in detail in Appendix B, a sm
applied external fieldE induces a drift of the spiral rotation
center at a velocityv such that

v5a iE1a'v13E, ~18!

wherev1 is the spiral rotation vector. It has previously be
noted@14# that a weak scroll wave curvature acts as an
ternal field and, therefore, that a straight scroll wave is
stable ifa i,0 since a small curvature tends to grow. Mo
precisely, the smallkz behavior of the two translation band
is given by

s6~kz!56 iv11~2a i6 ia'! kz
21O~kz

4!. ~19!

FIG. 5. ~a! Real and~b! imaginary part of the growth rates(kz)
as a function of the wave number for the parameter valuea
50.44, b50.01, e50.025. The meander mode, (s) is stable and
the growth rate decreases with the wave number on the mea
band. The modes of the rotation band (d), are also stable. The
mode of the translation band (1), are unstable for finite values o
kz .
04623
d

l

-
-

Equation~19! is simply derived by a first-order perturbativ
calculation as follows. The linear eigenvalue problem~7!,~8!
reads

s~kz!S u1

v1
D 52kz

2S u1

0 D 1Lkz50S u1

v1
D . ~20!

For small kz , the modes of the translation bands can
obtained by perturbation around the known translat
modes atkz50 @Eq. ~12!#. For definiteness, we consider th
upper band@which start at s(kz50)51 iv1# and write
s(kz)5 iv11ds, where ds!1 is the sought perturbative
correction,

S u1

v1
D 5S ut

v t
D 1S du1

dv1
D . ~21!

Substitution in Eq.~20! gives

dsS ut

v t
D 1 iv1S du1

dv1
D 52kz

2S ut

0 D 1Lkz50S du1

dv1
D . ~22!

The first-order expression ofds is obtained in a usual way
by taking the scalar product of Eq.~22! with the left eigen-
vector (ũt ,ṽ t) of Lkz50 for the eigenvalueiv1 ~Sec. II D!

ds52kz
2 ^ũt ,ut&

^ũt ,ut&1^ṽ t ,v t&
. ~23!

Equation~23! is equivalent to the announced formula~19!
since the matrix coefficients on its right-hand side~rhs! also
gives the spiral drift coefficients, as shown in Appendix
@see Eq.~B10!#.

In Table I, the spiral drift coefficientsa i anda' are com-
pared to the results of independent computations of the
vature ofs(kz) at kz50 for the translation bands, from di
agonalizations ofLkz

at different values ofa. The good
agreement between these results is a check both of the
lytic formula ~19! and of our numerics.

To recapitulate, the translation band instability is found
be a long-wavelength instability~i.e., the band of unstable
wavelength starts atkz50) which is present in the whole

er
t
TABLE I. The scroll wave pulsationv1, half the second derivatives t9(kz50)/2 of the translation band a
kz50 @with s t(0)5 iv1#, half the second derivativesm9 (kz50)/2 of the meander band atkz50 @with
Im$sm(0)%.0# and the drift coefficients of the 2D spiral in an electric fielda i2 ia' for b50.01, e
50.025 and different values ofa.

a v1 s t9(kz50)/2 sm9 (kz50)/2 a i2 ia'

0.44 1.16 1.910.82i 21.610.78i 21.9720.84i
0.48 1.38 3.210.44i 23.711.10i 23.020.49i
0.67 1.76 22.1410.85i 1.6110.25i 2.220.9i
0.7 1.78 21.6310.83i 1.0410.21i 1.6220.83i
0.8 1.81 20.8710.70i 0.0820.06i 0.85420.71i
0.9 1.77 20.6510.61i 20.2520.089i 0.6620.61i
5-6
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SCROLL WAVES IN ISOTROPIC EXCITABLE MEDIA: . . . PHYSICAL REVIEW E65 046235
domain of parameters where a 2D-spiral drifts oppos
@given our sign convention in Eq.~B1!# to the applied field.

2. Nonlinear evolution of the instability

The nonlinear fate of this translation band instability w
studied by direct dynamical simulations of Eqs.~1! and ~2!.
In the parameter regime of Fig. 5 when modes of the tra
lation bands are unstable for finite values ofkz , an initially
straight scroll wave was observed to be unstable provi
that the simulation box was large enough to accommodat
unstable mode. In agreement with previous observati
@12#, the filament was observed to increasingly depart fr
its straight initial configuration and its length was observ
to grow in the simulation box. When the filament eventua
collided with the boundaries of the simulation box, it sp
into two filaments. This repeated again and no restabiliza
was observed. A typical evolution is shown in Fig. 6.

The minimum simulation box size that allowed the ins
bility development closely agreed with the results of the l
ear stability analysis. For instance, in the casea50.44, b
50.01, ande50.025, the maximalkz of the unstable band is
obtained to bekz50.84 via the linear stability analysi
whereas the direct numerical simulations show a minim
simulation box height corresponding tokz50.81.2

The choice of boundary conditions on the simulation b
top and bottom faces influences the minimum box height

2For the observed largest unstablekz , numerical simulations were
not carried out long enough to observe the full nonlinear deve
ment of the instability. However, it was observed with increase
the box height of a single space step.

FIG. 6. Instantaneous filament evolution starting from a sligh
perturbed straight scroll for equally spaced times (t525, t550, t
575, andt5100) during a simulation in a simulation box of siz
(12831283120) with a space discretization stepdx50.2 using
periodic boundary conditions. The parameters area50.44, b
50.01, ande50.025 and correspond to the linear spectrum sho
in Fig. 5.
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the instability development~but, apart from that, was no
observed to qualitatively modify the instability nonlinear d
velopment!. This critical size was found to be twice bigge
for periodic boundary condition than for no-flux bounda
conditions that can accommodate linear modes of wa
length twice as long as the box height.

B. The third-dimension-induced meander instability

In the region where a 2D spiral drifts toward an appli
field ~i.e., a i.0!, the modes of an untwisted scroll wav
translation bands are stable. As pointed out in Ref.@15#, an
untwisted scroll wave can nonetheless be unstable in a
rameter region where a 2D spiral is stable. This happ
when the meander bands are destabilized by deformatio
the z direction as we study below.

1. Linear analysis

This induction of the meander instability by thre
dimensional effects is shown in Fig. 7. For the parameter
Fig. 7~a!, all modes have negative real parts and the sc
wave is stable. However, one sees that the real part of
modes on the meander band starts by increasing askz in-
creases from zero. For the parameters of Fig. 7~b! which
stand closer to the 2D meander boundary, a finite band
modes withkzÞ0 has acquired a positive real part while th
real part of 2D spiral meander mode atkz50 is still nega-
tive. Thus, for these parameter values close to the ‘‘sm
core’’ side of the 2D meander instability boundary, a 3
scroll wave is unstable to meander while the steadily rotat
2D spiral is still stable as pointed out in Ref.@15#.

On the ‘‘large core’’ side of the meander instabilit
boundary, three-dimensional modulations have on the c
trary a stabilizing effect on the meander instability and t
2D and 3D meander instability thresholds coincide as sho

-
f

n

FIG. 7. The growth rate Re@s(kz)# as a function of the wave
number for the parameter value~a! a50.7 and~b! a50.67. ~b!
The other parameters areb50.01 and e50.025. The meande
mode, (s), is stable forkz50 both in cases~a! and~b!. The growth
rate increases on the meander band withkz . In case~a!, it always
remains negative and there is no instability. In case~b!, it becomes
positive for kz higher than 0.30 and lower than 0.69 showing t
finite-kz instability of the steady scroll wave. The rotation (d) and
translation bands (1) are stable. In the phase diagram~Fig. 1! the
points with a spectrum similar to the~b! case are represented b
crosses (3).
5-7
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HERVÉ HENRY AND VINCENT HAKIM PHYSICAL REVIEW E 65 046235
in Fig. 8 ~note, however, that the translation band instabi
of Sec. III A renders the scroll wave unstable for these
rameters!.

The fact that the curvature of the translation and mean
bands are of opposite sign in Figs. 5 and 7 may lead on
think that the finitekz behavior of the meander bands is al
related to 2D spiral drift~as indeed proposed in Ref.@15#!.
However, a quantitative computation shows no simple re
tion between the meander bands curvature atkz50 and the
spiral drift coefficient as reported in Table I. Moreover, ev
at the qualitative level, there is no general validity to t
opposite sign rule between the translation and mean
bands curvature atkz50, as shown by the data of Fig. 4.

It is of some interest to see how the spectrum of Fig. 5
transformed into the spectrum of Fig. 7 as one traverses
2D meander unstable region. This happens through hyb
ization between the translation and meander bands as i
trated in Fig. 8.

2. Restabilized bifurcated states

We performed direct numerical simulations to exam
the nonlinear development of the meander bands instab
at kzÞ0 and to characterize the restabilized nonlinear sta
For boxes of medium size in thez direction as used in ou

FIG. 8. Real and imaginary part of the growth rates(kz) as a
function of the wave number forb50.01, e50.025. ~a!,~b! a
50.5; ~c!,~d! a50.52. In both cases, the real part decreases on
meander band and increases on the translation band withkz for
small values ofkz . In thea50.52 case, hybridization of the eigen
vectors of the two bands exchange these trends at slightly hi
values of kz , i.e., the real part of the meander band increa
whereas the real part of the translation band decreases. In the
diagram of Fig. 1, the points where the linear spectrum is simila
one of these cases~with both the meander and translation ban
unstable at smallkz! are represented by circles (s).
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numerical simulations, the restabilized nonlinear sta
strongly depend on the top and bottom boundary conditio
Two different ones were implemented~no-flux boundary
conditions were always implemented on the side bou
aries!. We used either periodic boundary conditions that p
mit the development of a single pair of unstable modes
are simpler to analyze or no-flux boundary conditions sin
they are clearly more relevant in an experimental conte
We describe the results in turn.

Periodic boundary conditions. Direct numerical simula-
tions were performed in the parameter regime of Fig.
Three types of initial conditions were used which all led to
stationary restabilized scroll wave after a transient regim

For the first one, the perturbation of the steady state w
chosen to contain the unstable wavelengths6kz . The initial
fields were chosen in the formu(x,y,z)5u2D(x,y)@1
1a cos(kzz)#,v(x,y,z)5v2D(x,y)@11a sin(kzz)# with the mag-
nitude a of the 3D perturbation being of order 1022 (u2D
andv2D correspond to a steady spiral wave that is stable
2D in this regime!. This perturbation transforms the straig
unperturbed instantaneous filament into a ‘‘helix’’ of sma
elliptical cross section and pitch 2p/kz . When the wave-
length kz corresponded to an unstable mode, this helix w
observed to grow and to reach a helical restabilized stat
periodicity kz .

A slightly more complicated time development was o
served with an initial perturbation of the straight scroll wa
in the form u(x,y,z)5u2D(x,y)@11a cos(kzz)#,v(x,y,z)
5v2D(x,y)@11a cos(kzz)#. This gives the instantaneous fila
ment@xf(z),yf(z)# a planar ‘‘zig-zag’’ shape of small ampli
tude,x(z)5x1cos(kzz), y(z)5y1cos(kzz). The zig-zag pertur-
bation was first observed to grow before turning into
helical restabilized state of periodicitykz . This type of time
development is expected on general ground in system w
left and right progressive wave compete~see, e.g., Ref.@24#!.

Finally, competition between several different unstab
modes~up to four differentkz! was examined with initial
conditions such as u(x,y,z)5u2D(x,y)@11a exp(2(z
2zo)

2/Lc)#,v(x,y,z)5v2D(x,y)@11b exp(2(z2zo)
2/Lc)# ~typical

values arei(a,b)i250.01 andLc about a few tens of spac
steps!. In that case, it was generally observed that the m
unstable wavelength compatible with the box height was
lected. At a qualitative level, the transient regime was fou
to mainly depend of the planar or nonplanar character of
initial perturbed filament: When it was planar~caseb5a) a
zig-zag filament first grew before taking an helical sha
When it was nonplanar,bÞa then an helical filament grew
directly.

Close to the instability threshold, the shape of the res
bilized instantaneous filament is closely approximated b
helix of circular cross section, as shown in Fig. 9, and
motion can be portrayed in a way similar to the epicyc
description of meander. The axis of the instantaneous
ment helix rotates around a fixed vertical axis at the f
quency of the steady two-dimensional spiral. In the rotat
frame where these two axes are fixed, the helical insta
neous filament itself rotates with a frequency close to
imaginary part of the meander linear eigenmode~i.e., the
difference between these two frequencies is of order 1022 in
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SCROLL WAVES IN ISOTROPIC EXCITABLE MEDIA: . . . PHYSICAL REVIEW E65 046235
a strong meander regime and of order 1023 in a weak me-
ander regime!. Thus, for periodic boundary conditions th
meander amplitude is found to be independent of height~z!
while the phase of the epicycle motion varies linearly withz.

FIG. 9. ~a! View of the restabilized state in the weakly nonline
regime. The parameters are:a50.684, b50.01, ande50.025, the
size of the simulation box is (1283128)3130 with dx50.2 and
periodic boundary conditions are used. The dashed lines are
trajectories of the tip of the spiral in four regularly spaced horizo
tal planes. The bold line is the instantaneous helical filament.
dash-dotted line is the axis around which the axis of the hel
filament rotates.~b! Black bold circles, projections of the instanta
neous filament on an horizontal plane at different times. The b
radius in each circle shows the instantaneous filament poin
heightz50. This point trajectory is also shown for several perio
of rotation ~bold dashed-dotted line: evolution between circles
and 7; thin gray line: evolution for some time afterwards!. The
pulsation of the axis of the filament is equal tov151.744, the
pulsation of the meander in the rotating frame is equal tov25
22.159. These values are to be compared with results of the li
stability analysis:v151.766 andv2562.194.~c! View of the re-
stabilized state with the same parameters and same simulation
using no flux boundary conditions. The instantaneous filament h
zig-zag shape and the amplitude of meander varies withz. ~d! Black
bold lines, projections in a horizontal plane of the instantane
filament at different times. The trajectory of the spiral tip in a pla
where the amplitude of meander is maximal is also shown for s
eral periods of rotation~bold dashed-dotted line: evolution betwee
filaments 1 and 7; thin gray line: evolution for some time aft
wards!. Its pulsation is equal tov151.745 whereas the pulsation o
the instantaneous filament in the rotating frame is equal tov25
22.159. The mean distance between the instantaneous fila
points and the central~dash-dotted! axis is R50.4930 in the~a!
~periodic boundary condition! figure andR50.4944 in the~c! no-
flux case. The core radius of the corresponding 2D spira
R050.4833.
04623
We performed two different systematic studies in order
better characterize the nature of the 3D meander bifurcat
In the first one, we kept the size of the simulation box co
stant and varied the excitability usinga. In the second one
we kepta constant and varied the size of the simulation bo
that is, the wave number of the initial perturbation.

At the linear level, the results of these direct numeric
simulations are in close agreement with the predictions of
linear stability analysis, both for the instability thresholdac
~with an accuracy of order 1023) and for the unstable wave
number range@k2(a),k1(a)#.

The radius of the instantaneous filament helix can
taken as a measure of the 3D meander instability amplitu
As shown in Fig. 10, it is found to behave as the square r
of the distance to the threshold@either ua2acu or ukz
2k6(a)u#. Therefore, as reported previously@15#, the 3D
meander bifurcation is a supercritical Hopf bifurcation, as
2D.

However, thekz dependence of the nonlinear term quick
becomes important away from threshold. In Fig. 10, t
square of the meander amplitudeR2 is compared to the
growth rate of the unstable meander mode in the whole b
@k2(a),k1(a)#. A clear asymmetry of theR2 curve is al-
ready seen, with a slope at thek2(a) end about 3.4 times
larger than thek1(a)-end slope.

No flux boundary conditions.For the box heightH used in
our simulation~about two or three unstable wavelengths!, the
boundary conditions chosen on the top and bottom bound
conditions have a strong influence on the restabilized st
For no-flux boundary conditions, the spiral wave in ea
horizontal x-y plane has a meandering motion. Howev
contrary to the case of periodic boundary conditions the m
ander amplitude depends onz and is well approximated by
ucos(kzz)u ~see Fig. 9!. This implies in particular that in some
horizontal planes the meander amplitude is zero and that
corresponding spiral tip performs a simple steady rotation
the rotating frame where these special tips are motionl
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FIG. 10. ~a! Square of the amplitude of the meandering resta
lized state as a function of the parametera. The parameters used ar
b50.01 ande50.025. The simulation box is (1283128)3130,
with dx50.2 and periodic boundary conditions are used.~b! Com-
parison of the square of the amplitude of the meandering rest
lized stateR2 multiplied by 0.035 and the growth rate of the mea
dering mode Re(s). Same parameter regime as in~a! anda is fixed
to 0.68.
5-9



t
th
rr
u
so
is

k
a

fo

ry

ry
n
b

-
e

-

o

if

e-

re-
of
-
ce
lu-

s is
oll
nds

un-
t
and

in
ble

he

.
ve
to

3D.

e
A

a
ht
ra-

plex

w-
ula-
a
ht
at
d at
to

e

ated

-

HERVÉ HENRY AND VINCENT HAKIM PHYSICAL REVIEW E 65 046235
the instantaneous filament takes a planar zig-zag shape
rotates around its vertical midline at a pulsation close to
imaginary part of the unstable meander eigenmode co
sponding to the wavelength of the filament. Thus, for no-fl
boundary condition, the meander amplitude varies sinu
dally with height while the phase of the epicycle motion
independent of height.

This shape and motion are simply understood in a wea
nonlinear description where the restabilized state can be
proximated as a sum of the unperturbed solution and the
unstable meander eigenmodes@sm(kz) andsm* (kz) at 6kz#,

u5u0~r ,c!1@Au1~r ,c!exp@ i (kzz1v2t)#1Bu1~r ,c!

3exp@ i ~2kzz1v2t !#1c.c.#, ~24!

v5v0~r ,c!1@Av1~r ,c!exp@ i (kzz1v2t)#1Bv1~r ,c!

3exp@ i ~2kzz1v2t !#1c.c.#, ~25!

with u1 ,v1 the eigenmode of eigenvaluesm(kz) and v2
5Im@sm(kz)# the meander frequency. The no-flux bounda
condition , ]zu50, at z50 and z5H52p/kz enforcesA
5B ~i.e., for the height considered, the no-flux bounda
conditions stabilize the state with symmetric upward a
downward propagating deformation that was observed to
unstable with periodic boundary conditions!. The instanta-
neous filament corresponding to the fields~25! is easily de-
termined by remembering that it is the locusu5utip ,
v5v tip . Its position is conveniently parametrized asxtip8 (z)
5x081dx8(z,t), ytip8 (z)5y081dy8(z,t) using Cartesian coor
dinates in the rotating frame where the unperturbed filam
is standing at (x08 ,y08). For smalluAu, one obtains

]x8u0dx81]y8u0dy81cos~kzz!@2Au1eiv2t1c.c.#50,
~26!

]x8v0dx81]y8v0dy81cos~kzz!@2Av1eiv2t1c.c.#50,
~27!

where the fieldu1 ,v1 ,u0 ,v0 and their derivatives are evalu
ated at the unperturbed filament position (x08 ,y08). Inversion
of Eqs.~26! and ~27! gives

dx85cos~kzz!@aAeiv2t1c.c.#,

dy85cos~kzz!@bAeiv2t1c.c.#, ~28!

wherea andb are complex constants that depend onu1 ,v1
and the derivatives ofu0 evaluated at the point (x0 ,y0). This
clearly shows the planar zig-zag shape of the instantane
filament since points in differentx-y planes simply differ by
the real scale factor cos(kzz). As time evolves, Eq.~28! also
shows that the filament points follow scaled ellipses in d
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ferentx-y planes. Our simulations show that, as for 2D m
ander, these ellipses are in fact almost circular.3

Finally, we briefly discuss the transition between the
stabilized meander regime seen on the ‘‘small core’’ side
the phase diagram~Fig. 1! and the negative line tension dy
namics that belongs to its meander ‘‘large core’’ side. Sin
scroll waves do meander in this transition region, the evo
tion of scroll waves as seen in direct numerical simulation
not directly linked to the linear spectrum of the steady scr
wave. For example, when the meander and translation ba
are strongly hybridized, the translation bands are only
stable for small values ofkz ~Fig. 8!. Nonetheless, direc
simulations show that the meandering scroll is unstable
that its core grows as in the negative line tension regime
simulation boxes small enough to only contain unsta
modes of the meander bands with larger values ofkz . This
happens on the whole smalla side of the dashedv15v2 line
of Fig. 1. This line stands very close to the line where t
external field drift of meandering spiral changes sign@25#
and it is difficult to distinguish the two in our simulations
So, the link between the spiral drift sign and the ‘‘negati
line tension’’ type of instability development continues
hold for meandering scroll wave.

IV. INFLUENCE OF TWIST

As noted in several previous studies@7,8,10#, twist is an
important degree of freedom brought by the extension to
It is well known from classic studies of elasticity@26# ~and
everyday experience! that straight rods and ribbons can b
destabilized by twisting them beyond a certain level.
somewhat similar instability was reported in Ref.@10# in
numerical simulations of excitable filaments. Beyond
threshold twist, the rotation center line of an initially straig
twisted filament was observed to adopt a helical configu
tion. Observations of a similar ‘‘sproing’’@10# instability
have since been made in the related context of the com
Ginzburg-Landau equation vortex lines@27#. The character-
istics of the excitable filament sproing instability have, ho
ever, remained somewhat unclear. In the dynamical sim
tions of Ref.@10#, a single filament turn was imposed in
simulation box with periodic conditions, and the box heig
was varied. A complicating feature of this procedure is th
both twist and the available wavelength range are change
the same time. On the theoretical side, the instability fails

3An explanation can be provided by the proximity of thev2

5v1 point on the meander threshold line~as noted in a particular
limit in Ref. @14#!. The argument is that~i! the meander modes ar
close to the translation modes whenv2 is close tov1, ~ii ! the
ellipse should reduce to a circle for translations since the transl
circular core is circular. This can be explicitly seen from Eq.~28!.
Namely, Eq. ~28! gives dx81 idy85cos(kzz)@A(a1ib)exp(iv2t)
1A* (a*1ib* )exp(2iv2t)#. The explicit inversion of Eqs.~26! and
~27! shows thata1 ib is proportional to (v tu12utv1) and, there-
fore, vanishes when (u1 ,v1) tends toward the translation eigen
mode (ut ,v t). In this limit, only the term proportional toa*
1 ib* remains anddx81 idy8 follows a circle.
5-10
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SCROLL WAVES IN ISOTROPIC EXCITABLE MEDIA: . . . PHYSICAL REVIEW E65 046235
be captured by small twist approaches@16,12# since@12# the
motion of the rotation center is not influenced by twist in th
limit ~see Appendix D!.

The present approach permits to relieve some of th
problems since the twisttw can be varied from zero to larg
values and a whole range of wavelengths can be examine
the linear stability computations (kz is simply a paramete
that can be given any chosen value independently oftw).

We restrict ourselves here mostly to parameter values
which a straight untwisted filament is stable, that is, on
largea side of the~3D! meander instability region. Figure 1
shows the frequency and tip radius for a family of twist
scroll wave obtained by increasingtw from 0 to tw at one
such parameter point (a50.8,b50.01,e50.025).

The frequencyv1(tw) increases quadratically at sma
twist and almost linearly for larger twist values. The qu
dratic behavior at smalltw is simply obtained by applying
first-order perturbation theory to Eqs.~5! and ~6!, which
gives

v1~tw!5v1~tw50!2tw
2 ^ũf ,]ffu0&

^ũf ,]fu0&1^ṽf ,]fv0&
1O~tw

4 !.

~29!

The direct computation of the matrix element ratio on the
of Eq. ~29! is in good agreement with a direct fit of th
v1(tw) curve of Fig. 11~see caption!. Analytic descriptions
of the v1(tw) curve for larger twist values have recent
been obtained in the free boundary limit (e→0) both for
small core@28# and large core scroll waves@29#.

The determination of a family of increasingly twiste
steady scroll waves permits one to determine the evolutio
the stability spectrum withtw . The results of such a compu
tation are shown in Fig. 12 for scroll waves of Fig. 11. A
twist increases, the deformations of the translation bands
particularly important. As expected from general argume
~Sec. II B 2!, for tw50.2 @Fig. 11~b!#, the translation bands
s t,1 ,s t,2 are no longer even and related by complex con
gation. It only remains the lower symmetrys t,1* (kz)5s t,2

FIG. 11. Frequencyv1 of the scroll wave as a function of th
twist for a50.8, b50.01, ande50.025. The smalltw behavior of
the pulsation can be well approximated byv1(tw)5v1(tw50)
10.7205tw

2 for low values oftw . For higher values oftw , a linear
behavior of v1 as a function oftw is observed. The first-orde
perturbation result coefficient~29! is 0.7203 using the numerically
determined rotation eigenmodes ofL and of its adjoint.
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(2kz). One can note also that the translation modes w
Re@s(kz)#50 stand atkz56tw and no longer atkz50, in
agreement with the analytic expression given in Sec. II
When twist is further increased totw'0.33 ~not shown! a
second maximum of Re@s(kz)# appears nearkz50. The
value of Re@s(kz)# is negative at first at this seconda
maximum. However, it increases withtw and it is slightly
positive attw50.35 @Fig. 11~c!#. The twisted scroll waves
are then unstable for a finite range of wave vectors neakz
50. Increasing twist further, enlarges the range of unsta
wavelengths and the instability growth rate, as shown in F
11~d!.

Dynamical simulations reported in Sec. IV B show th
this twist-induced instability of the translation bands cor
spond to the ‘‘sproing’’ instability of Ref.@10#. Before de-
scribing these results, it is worth explaining why the ins
bility does not appear around the translation modes atkz5
6tw but a finite wave vector away from them. This is
direct consequence of 3D rotational invariance: a twis
scroll wave the axis of which is tilted has the same freque
as the one the axis of which is vertical. So, a small tilt p
turbation should not change the translation mode eigenva
6 iv1 to linear order. Therefore, they remain local extrem
on the translation bands, as it is observed in Fig. 12. A dir
mathematical proof~based on the same reasoning! is offered
in the next section.

Finally, we find it interesting to show in Fig. 13 the twis
influence on the spectrum in the ‘‘negative line tension’’ p

FIG. 12. Real parts of the rotation band~thin solid line! and the
two translation bands~bold dashed and dash dotted lines! as a func-
tion of the wave numberkz for the same parameter valuesa
50.8, b50.01, ande50.025 and different values of twist:~a! tw

50, ~b! tw50.2, ~c! tw50.35, and~d! tw50.45. The translation
bands have maxima atkz56tw with a zero growth rate. A second
ary maximum appears on the translation bands as the twist
creases. At a threshold value of the twist it becomes unstable
nonzero value ofkz .
5-11
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HERVÉ HENRY AND VINCENT HAKIM PHYSICAL REVIEW E 65 046235
rameter regime of Fig. 5, although the untwisted scroll wa
is already unstable in this case. Twist modifies the spect
in a way that is rather different from that seen in Fig. 12
mainly amplifies the instability of the largekz part of the
spectrum.

A. Helical destabilization and 3D rotational invariance

In order to demonstrate that the translation modes eig
values atkz56tw remain extrema on the translation band
we show that

ds

dk U
kz56tw

50. ~30!

We proceed in two steps. First, perturbation theory is use
compute the eigenvalues of modes close to the transla
modes on the translation bands. For definiteness, we con
modes at kz52tw1dk, close to the translation mod
(ut ,v t) at kz52tw with s5 iv1. Equations~7! and~8! can
be written without approximation,

FIG. 13. Real parts of the rotation band~thin line! and the two
translation bands~dashed and dashed-dotted! as a function of the
wave numberkz for a50.44, b50.01, ande50.025 and different
values of twist:~a! tw50, ~b! tw50.1, ~c! tw50.14, and~d! tw

50.19. The translation bands have a minimum zero growth rate
kz56tw . The maximum growth rate of the translation bands
increased by twist. The meander modes also become less stab
twist is increased. The change in the most unstable band fotw

close to 0.14 appears to be due to hybridization between the tr
lation and meander bands like the one observed in Fig. 8.
results of direct numerical simulations show that twist does
qualitatively modify the development of the zero twist instability
this regime: a ‘‘negative line tension’’ growth of the filament
observed.
04623
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s~kz!S u1

v1
D 5~2 i dk212dk tw12i twdk ]f!S u1

0 D
1Lkz52twS u1

v1
D . ~31!

Seeking in perturbation,u15ut1du1 , v15v t1dv1, one ob-
tains to first order indk,

dsS ut

v t
D 1 iv1S du1

dv1
D 52dk tw~11 i ]f!S ut

0 D
1Lkz52twS du1

dv1
D . ~32!

Multiplying by the left eigenvector (ũt ,ṽ t) of Lkz52tw
for

the eigenvalueiv1 and taking the scalar product gives,

ds

dk U
kz56tw

5
2tw

^ũt ,ut&1^ṽ t ,v t&
^ũt ,~11 i ]f!ut&. ~33!

Thus, the translation modes remain extrema on the tra
lation bands, if

^ũt ,~11 i ]f!ut&50. ~34!

Equation~34! is a consequence of 3D rotational invarian
as we proceed to show. The perturbation correspondin
inclining the scroll axis can be found by expressing the
clined scroll in the vertical scroll referential, similarly t
what was done to determine translation modes@Eq. ~11! and
~12!#.

One obtains

S uinc
(1)

v inc
(1)D 5exp@ i ~v1t1twz!#S uinc

v inc
D

5exp@ i ~v1t1twz!#Fz exp~ if!S ] r1
i

r
]fD

1twr exp~ if!]fG S u0

v0
D ~35!

and the complex conjugate mode. One can directly ch
that uinc

(1) ,v inc
(1) obey the linearized time dependent equatio

Namely,

~] t12tw]fz
2 2]zz

2 !uinc
(1)5~v1]f1tw

2 ]ff
2 1¹2D

2 !uinc
(1)

1@]uf ~u0 ,v0!uinc
(1)

1]v f ~u0 ,v0!v inc
(1)#/e, ~36!

] tv inc
(1)5v1]fv inc

(1)1]ug~u0 ,v0!uinc
(1)1]vg~u0 ,v0!v inc

(1) .
~37!

Equation~37! shows that (uinc ,v inc) @Eq. ~35!# obey

or

as
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e
t
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SCROLL WAVES IN ISOTROPIC EXCITABLE MEDIA: . . . PHYSICAL REVIEW E65 046235
@Lkz52tw
2 iv1#S uinc

v inc
D 5S 2 i2tw~11 i ]f!ut

0 D . ~38!

The inhomogeneous rhs of Eq.~38! comes from the fact tha
the ]z derivative terms in Eq.~37! act both on the exponen
tial prefactor and on the intrinsicz dependence ofuinc @Eq.
~35!#, while in effect only their action on the exponenti
term is taken into account in Eq.~38! ~through thekz depen-
dence ofLkz

).
Equation~38! directly gives the sought orthogonality re

lation ~34! after multiplying both of its sides by the left e
genvector (ũt ,ũt) of Lkz52tw

with eigenvalueiv1 and tak-
ing the scalar product.

B. The sproing bifurcation

In order to study the nonlinear development of the twi
induced instability shown in the parameter regime of Fi
12~c! and 12~d!, we performed direct numerical simulation
of twisted scroll waves by using periodic boundary con
tions at the top and bottom of the simulation box.

Two kinds of initial conditions were used. The simple
one consisted of two-dimensional spirals stacked along
vertical ~z! axis. The twist was introduced by rotating the
around this vertical axis. The main disadvantage of this t
of initial conditions was that they usually are far from
stationary twisted scroll wave and from a restabilized wa
when it existed. As a result, reaching the asymptotic attr
ing state could be very costly in computational time. In ord
to avoid this problem we mainly used initial conditions co
structed using results of previous direct simulations on a g
with the same values of the parameters and the same
zontal size but of a different vertical extension, interpolati
linearly the values of theu andv field on the new grid.

For definiteness, we describe the result for the parame
of Fig. 12.

We first focus on the case when a single turn of twist
initially imposed as in Ref.@10#. This case is special for th
following reasons. On one hand, the previous linear stab
results~Fig. 12! show that all the potentially unstable mod
correspond toukzu,tw . On the other hand, in a box o
height H, the only possiblekz values compatible with the
imposed top and bottom periodic boundary conditions
multiple of 2p/H. Therefore, for a single turn of twisttw
52p/H, there is a single potentially unstable mode in t
simulation box and it stands atkz50.

A series of dynamical simulations were performed
boxes of varying heightsH. The initial twist was correspond
ingly varied fromtw50.3 to tw50.5.

For low values of twist, the twisted initial state simp
evolves toward a straight twisted scroll wave. The instan
neous filament has a helical shape that rotates at a fi
time-independent frequency around its vertical axis. In e
horizontal plane, the wave is seen as a spiral steadily rota
around the helix axis.

Beyond a threshold twisttc , the twisted initial state
evolves toward a more complex state. The threshold twis
estimated to betc50.352 from the direct numerical simula
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tions. It closely corresponds to the value 0.350 obtained fr
the linear stability analysis for the instability of thekz50
modes~the instability threshold twist atkzÞ0 is t.0.345).
The asymptotic scroll wave state is shown in Fig. 14
tw50.381 and it is qualitatively similar for other valuestw
.tc . The instantaneous filament takes a helical shape
each time. The axis of this instantaneous helical shap
independent of time but its other characteristics vary w
time. The point of the instantaneous filament in a given ho
zontal plane~i.e., the spiral wave tip in that plane! closely
follows an epicycloidal motion~Fig. 14! and the instanta-
neous filament global evolution can be accurately para
etrized as

x5R1 cos~vst1twz1f!1R cos~vmt1twz!,

y5R1 sin~vst1twz1f!1R sin~vmt1twz!. ~39!

The pulsationvs and the radiusR1 are close to the pulsation
and radius of the stationary straight twisted scroll. The p

FIG. 14. ~a! The bold solid line represents the helical instan
neous filament, the dotted line the mean filament, and the thin s
lines the quasicircular trajectories of the instantaneous filamen
horizontal planes of equally spacedz. Parameter values area
50.8, b50.01, ande50.025, the simulation box is (1283128)
3110 with dx50.15, corresponding totw50.381.~b! Modulus of
the Fourier transform of the spiral tip complex position (x1 iy) in a
horizontal plane for the same parameter regime. The peak atv'
20.064 corresponds to the slow movement of the mean filamen
the plane while the peak atv51.884 corresponds to the rapid ro
tating motion of the spiral. The Fourier transform was perform
using 2048 points with a time spacing ofdt50.1969.~c! The thin
solid line is the trajectory of the spiral tip in a horizontal plane a
the bold dashed line is the trajectory of the mean filament in t
plane. The mean filament rotates clockwise while the fast rota
of the spiral tip is counterclockwise. At a given time, the projecti
of the mean filament and instantaneous filaments on the horizo
plane are circles centered on the helices axis position marked
star.
5-13
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TABLE II. For different values of the imposed twisttw , values of the pulsation of the restabilized me
filamentvm , of the difference between the pulsation of the steady scrollv1(tw) and the imaginary part of
the unstable translation mode forkz50, the pulsation of the steady scrollv1(tw), the pulsation of the
restabilized spiral around the mean filamentvs , the local twistt of the restabilized state, and the calculat
corresponding pulsationv1(t). One notes thatvs is close tov1(t).

tw vm v1(tw)2Im@s t(kz50)# v1(tw) vs t v1(t)

0.50 0.053 0.049 1.973 1.91 0.353 1.892
0.45 0.061 0.059 1.943 1.88 0.347 1.889
0.40 0.066 0.066 1.916 1.88 0.347 1.889
0.355 0.063 0.063 1.891 1.88 0.349 1.890
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sationvm is found to be small compared tovs ~Table II!.
The radiusR is zero at the bifurcation threshold. It increas
and becomes comparable toR1 astw increases pasttc ~Fig.
15!. As Rvm remains small compared toR1vs , the move-
ment of the spiral tip in a horizontal plane can be describ
as a rapid rotation movement around a slowly mov
‘‘mean’’ point ~Fig. 14!. The bifurcation can thus be de
scribed as in Ref.@10# as a transition in the shape of the
slowly moving points, the ‘‘mean filament,’’ from a straigh
shape to an helix of radiusR ~with the same axis as th
instantaneous filament!.

The amplitude of the sproing bifurcation can be measu
by the radiusR of the helical mean filament.4 The numerical
simulations results~Fig. 15! show thatR behaves asAtw2tc
confirming the normal Hopf type of the bifurcation. The m
tion of a filament point in a horizontal plane is quasiperiod
with two frequencies@see Eq.~39! and Fig. 14# vm andvs .
As reported in Table II, the frequencyvm closely agrees with
the differencev12v t,kz50 between the stationary twiste

scroll pulsation (v1) and the imaginary part of the unstab
mode atkz50, as expected from a Hopf bifurcation in
rotating frame. The other frequencyvs is equal to the twisted
scroll pulsationv1 at the bifurcation point but departs from
as one moves away from it.

Some insight into the sproing bifurcation and the value
vs can be gained by computing the local twist of the res
bilized scroll wave. The mean filament can be taken as
central curve of a ribbon, one edge of which is the instan
neous filament. The local twist of this ribbon is equal
@using Eqs.~C2! and ~C4! of Appendix C#

t5
2p2Wr

L
5

tw

11~Rtw!2
, ~40!

whereL is the mean filament length andtw52p/H is the
twist imposed on the initial straight scroll wave. Equati
~40! shows that sproing decreases the twist. Moreover, w
the initial twist is increased the average helix radiusR also

4R can be easily computed asR5(Rmax1Rmin)/2, whereRmax

(Rmin) is the maximum~minimum! distance of the instantaneou
filament from its axis in a horizontal plane (Rmin should be consid-
ered to have a negative value if the spiral tip trajectory enlaces
axis of the helices during one rotation period!.
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increases so as to maintain the local twistt approximately
constant, as shown in Fig. 15~b!. The frequencyvs appears
to remain close to the frequency of twisted straight scr
wave with this value of the local twist, as shown in Table

It is interesting to compare the above results with wh
happens when the initial condition containsn turns of twist
since the modes withkz5 j 2p/H, j 51, . . . ,n21 obey both
kz,tw and the periodic boundary conditions. Analyzin
moderate values of the imposed twisttw5n2p/H requires
us, of course, to extend the box heightH proportionally ton
and restricts us ton<5.

The simplest interesting case occurs when a single
stable mode withkzÞ0 can develop in the simulation box
The linear stability results show that this can only happ
close to the instability threshold when the instability grow
rate is very low, otherwise thekz50 mode is also unstable
This is achieved, for instance, fora50.8, b50.01, ande
50.025, andn55 initial turns of twist in a box of height
H56133dx with dx50.15. The single unstable modekz
52p/H50.069 corresponds to a wavelength equal to
box heightH. With this parameter choice, a direct simulatio
shows that the instability develops. The asymptotic state
similar to the previously described one for a single unsta
mode atkz50. The movement of the corresponding insta
taneous filament can be parametrized using polar coordin
in each horizontal plane by

e

FIG. 15. ~a! (s) Radius~R! of the helical mean filament as
function of the twisttw , for a stationary straight twisted scro
wave and linear interpolation ofR2 for small values oftw2tc ~thin
continuous line! where the computed threshold twist istc50.352.
The parameters area50.8, b50.01, ande50.025.~b! Local twist
of the restabilized filament as a function oftw . The dashed line is
the line of equationt5tc , the continuous line is the line of equa
tion t5tw .
5-14
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SCROLL WAVES IN ISOTROPIC EXCITABLE MEDIA: . . . PHYSICAL REVIEW E65 046235
x1 iy5R1 exp@ i ~v1t1twz!#

1R2 exp@ i „v2t1~tw2kz2!z1c…#, ~41!

where R1.0.31 andv151.85 are close to the radius an
pulsation of the straight twisted scroll and whereR2.0.1
and v2520.047 are small compared toR1 and v1. The
wave numberkz250.069 is equal to the single unstable wa
number that can develop in the simulation box. The com
tation of v2 shows that it is close of the differencev1(tw)
2Im@s t(kz2)#. In contrast to the case of the single turn
twist, the instantaneous filament shape is slightly differ
from a helix since its radius varies along the vertical ax
The motion can nonetheless be interpreted in the same m
ner by considering that the scroll rotates uniformly aroun
slowly moving helical mean filament of radiusR2 and pitch
2p/(tw2kz2).

The case where several unstable modes of the transla
band can develop in the simulation box, can only be stud
in a box where several turns of twist are initially impose

FIG. 16. a50.8, b50.1, e50.025, the simulation box size i
(1283128)3349), the space step isdx50.2, and five turns of twist
are imposed, which corresponds totw50.450 ~a! The bold solid
line represents the restabilized mean filament. The instantan
filament and the quasicircular trajectories of instantaneous filam
in horizontal planes are not shown.~b! The dashed and solid bol
lines represent a top view of the instantaneous filament at two g
times. The three thin solid lines are typical trajectories of the sp
tip in horizontal planes. The motion of the spiral tip in each plane
the composition of a fast counterclockwise and a slow clockw
rotations.~c! Modulus of the space Fourier transform of the co
plex mean filament positionx(z)1 iy(z). The amplitude of each
mode is constant in time while its phase grows linearly in time w
a constant pulsationv(kz) shown in ~d!. For the Fourier modes
with an amplitude significantly different from zero,v(kz) is a linear
function of kz .
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The asymptotic state reached in such a case after the in
bility development, starting from an initially twisted straigh
scroll wave is shown in Fig. 16. It is significantly more com
plicated than in the single unstable mode case and the ins
taneous filament shape is rather different from a simple he

In each horizontal plane, the spiral tip rotates uniform
around a slowly moving point. The positions of these slow
moving points can be numerically computed5 and used to
construct the position of a mean filament. The motion of
mean filament is found to be well parametrized in each h
zontal plane by

x1 iy5 (
j 51 . . .n

Rj exp@ i ~kz
( j )z1v j t1f j !#, ~42!

wherez denotes the vertical position of the plane andkz
( j ) are

the wave numbers of the modes that have developed in
simulation box. All the observedkz

( j ) have the same sign a
tw . As seen from Eq.~42!, the corresponding modes have a
amplitude Rj which is constant in time and a phasev j t
1f j that evolves linearly in time. Moreover, the pulsatio
v j are linearly related to thekz

( j ) , v j5v1kz
( j )c, as shown in

Fig. 16. Thus, the mean filament parametrization can be
written as

x1 iy5eivtF~z2ct! with F~z!5 (
j 51 . . .n

Rje
i (kz

( j )z).

~43!

This explicitly shows that the mean filament deformati
propagates as a nonlinear wave of constant shape in the
tical direction. It was indeed directly checked that the me
filament shape did not noticeably change at long times in
simulation ~i.e., for time intervals as long asDt52000). A
direct computation of the twist shows that it is almost u
form and that its mean value is significantly lower than t
one obtained when onlykz50 mode can grow. In the cas
depicted in Fig. 16, the mean local twist of the restabiliz
state is 0.327 whereas in the restabilized state when only
kz50 mode can be destabilized, the mean local twist is eq
to 0.347.

The stability of the simple restabilized helices was tes
in the parameter regime if the more complex state of Fig.
existed. To this end, a simulation was first performed with
single turn of twist in a box height chosen such that t
initial twist was equal totw50.45. It produced, as alread
described, a restabilized helix similar to the one shown
Fig. 14. Five copies of this restabilized helix were then v
tically stacked. The resulting five-turn helix was used as
initial condition for a simulation analogous to the one sho
in Fig. 16. It was observed to evolve toward a complex st

5This can be done by considering the mean filament as the m
position of the instantaneous filament over a rotation period, or
considering it as the instantaneous center of rotation of the ins
taneous filament in a plane or by removing the high-frequency p
in the Fourier spectrum of the instantaneous filament motion. Th
three methods give very similar results.
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HERVÉ HENRY AND VINCENT HAKIM PHYSICAL REVIEW E 65 046235
identical to the one shown in Fig. 16. This clearly shows t
the simple helices are unstable and strongly suggest tha
complex state of Fig. 16 is the unique attractor in this para
eter regime. We repeated this computation with an ini
twist of 0.357 and again a similar complex state was p
duced.

Systematically varying the initial twist would permit us
see whether these complex states directly appear at the i
bility threshold or arise from a secondary bifurcation
stable simple helical states. More generally, further study
the filament shapes in longer boxes with more unsta
modes would be quite instructive. Both tasks require m
computer time and power than presently available to us
should be left for other studies.

V. CONCLUSION

We have searched to gain and present a general vie
scroll wave linear instabilities and of their nonlinear dev
opments for a simple model of an isotropic excitable m
dium. Different types of instabilities have been shown
arise depending upon the band of modes to which they
long. These different instabilities have been found to deve
along different ways and to give rise to distinctly differe
restabilized states that we have endeavored to characte

The negative line tension type of instability has be
found to occur in the weakly excitable part of the pha
diagram and to be strictly linked to 2D spiral drift in a
external field. In this respect, it seems worth trying and be
analyzing the mechanisms of spiral drift change. The me
dering instability is present in 3D in a parameter regi
larger than that in 2D. On the ‘‘small core’’ side of the pha
diagram, scroll wave meander in a regime where spirals
steadily rotating, as previously noted@15#. The long-
wavelength deformation of the meander band is, howe
not directly related to spiral drift. The introduction of twis
has been found to induce a deformation of the transla
bands. Above a threshold twist, this gives rise to the spro
instability that takes place a finite wave vector away from
translation mode. This has been shown to be a general
sequence of 3D rotational invariance and it explains that
sproing bifurcation is not captured by small twist a
proaches. The bifurcated state arising from the growth o
single unstable mode has been found to take a simple he
shape as previously described@10#. However, a more com
plex filament deformation has been observed to result fr
the growth of several unstable modes. Simulations in lar
boxes appear to be needed to better analyze these state

The present study appears worth extending along sev
other lines. It certainly is important to investigate how t
present results extend to more realistic models of excita
media, specially in the context of cardiac physiology. It w
also be quite interesting to see how rotating anisotropy@30–
33# or spatially varying properties induce the different ins
bilities or interact with them. Deeper insights into the beha
ior of these complex waves in various situations may
gained by developing and analyzing reduced models, re
ducing the basic phenomenology uncovered here. We hop
be able to report progress in this direction soon. Advance
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3D visualization@9,34# appear to render possible detaile
experimental characterization of scroll wave instabilities a
dynamics. We hope that the present results will also be s
as a further motivation to undertaking this challenging ta

APPENDIX A: NUMERICAL METHODS

1. Determination of the steady state

Determining the stationary scroll waves consists in so
ing the nonlinear eigenvalue problem~6!. To this end, the
equations are first discretized on a polar grid of sizeNr
3Nf . This provides a set of 2(Nr3Nf) equations@the val-
ues of the rhs of~6! on the grid points# with 2(Nr3Nf)
11 unknowns~the values of the fieldu0 , v0 on the points of
the grid and the pulsationv). This indetermination comes
from the rotational invariance of the problem and can
taken care of by setting the value ofuo(Nr ,Nf) to 0.5. One
thus has to find the zeros of 2(Nr3Nf) nonlinear equations
of 2(Nr3Nf) variables.

This can be done accurately by using Newton’s meth
The linear operator involved in Newton’s method is invert
using an iterative technique~biconjugate gradient@35#! and
the starting point is either the result of a direct numeri
simulation interpolated on the polar grid or the result of
previous computation with slightly different parameters. W
found that Newton’s method always converged and that
convergence was exponential and allowed us to reach a
racies of the order of 1028 in L2 norm6 in a few steps~about
ten which take about an hour using a DEC alpha PWS
Workstation for a grid of 803160 points! whereas direct
numerical simulations allowed only an accuracy of ord
unity in L2 norm.

2. Computation of the linear stability spectrum

The eigenvectors ofLkz
are denoted bye1 ,e2 , . . . and

indexed according to the real part of the corresponding
genvaluess1>s2>•••. In order to accurately compute th
eigenvalues of ofLkz

of the largest real parts, we have us
an iterative method proposed and analyzed in Ref.@20#. It is
briefly described in this appendix and some details of
implementation are provided.

The idea of the algorithm is to diagonalize a projection
Lkz

in a subspace~approximately! spanned by the eigenvec

torse1 , . . . ,em corresponding to a given numberm of eigen-
values of the largest real parts.

The algorithm proceeds in three main steps.
The first step consists in creating an appropriate vectox1

for generating the diagonalization subspace. A suita
choice is to takex15exp(Lkz

t)x0 for a generic vectorx0.

This suppresses the components ofx1 on the eigenvectors on
high index~note that these eigenvectors correspond to eig
values of large modulus!. The final consequence is that trun
cation at levelm produces an error of order exp@t(Re(sm11
2s i)# on the representation of thei th eigenvector~for i

6We defineiu,vi25((ui , j
2 1v i , j

2 ).
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SCROLL WAVES IN ISOTROPIC EXCITABLE MEDIA: . . . PHYSICAL REVIEW E65 046235
,m) @20#. In practice, multiplication by the exponential
approximately achieved by computing by iterationsx15(1
1dtLkz

) t0 /dtx0, for an arbitrary vectorx0, a sufficiently large

integert0 /dt, and a sufficiently smalldt to prevent the time
stepping scheme from being unstable@this means thatdt is
lower than 1/max(ilii), heredt.1025#.

The second step consists in generating an appropriate
spaceE for diagonalization. This is taken to be the spaceE
spanned by@G(Lkz

)#nx1 , n50, . . . ,m21, where G is a
polynomial, the choice of which is discussed below. Expl
itly, the computation of an orthonormal base ofE and of the
matrix A5ai , j of the projection of@G(L)#m on E proceeds
recursively as follows. Letx1 , . . . ,xn be then first element
of the base ofE and G(Lkz

)xn5yn . Then, at the next step
we compute

xn115

yn2 (
i 51, . . . ,n

~yn ,xi !xi

I yn2 (
i 51, . . . ,n

~yn ,xi !xi I
2

. ~A1!

The construction ends at stepm. This building of an or-
thonormalized base ofE presents the advantage of decre
ing the contribution of the first eigenmodes in the eleme
of higher order of the base. Otherwise, this contribut
would be dominant and would result in a lower accuracy
the computation. In our case, the scalar product is define
a discretized version of the standard scalar product~15!

~xi ,yj !5(
i r

(
i u

xi~ i r ,i u!yj~ i r ,i u!i rdrdudr. ~A2!

The third step consists in the diagonalization of an app
priate truncation ofG(Lkz

). SinceE is not invariant under

the application ofG(Lkz
), the orthogonal projectionGm of

G(Lkz
) onto E is considered. Its matrix elements are

gi , j5~xi ,yj !,~ i , j !P$1, . . . ,m%3$1, . . . ,m%. ~A3!

The obtained matrix is diagonalized and both its eigenv
tors and its eigenvalues are computed. It is checked at
end that the leading eigenvectors ofGm are good approxima
tions of the leading eigenvectors ofLkz

.
The choice of the polynomialG is of some importance

Indeed, the simplest and computationally most effici
choice would be to takeG(X)5X. This would result in the
amplification of the contribution of the eigenmodes ofLkz

of
large index @i.e., corresponding to eigenvalues of lar
modulus# and,Lkz

being ill-conditioned, would prevent th

success of the method. We have usedG(X)5(11dtX) t1 /dt,
with t1 chosen large enough to makeG(Lkz

) differ signifi-

cantly from the identity~a typical value wast150.5). De-
spite the increase in computational cost, this choice sign
cantly increases the accuracy of the method by decrea
the contribution of the eigenmodes of negative eigenvalu
04623
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Using m550, the ten most unstable eigenmodes a
eigenvalues are obtained with a good accura
i(s2Lkz

)(u1 ,v1)i2,1026.

3. Direct numerical simulations

Direct numerical simulations of three-dimensional exc
able media were performed using a forward Euler expl
time-stepping scheme . The diffusion operator was evalua
using finite differences and a 19-point formula@36#,

6dx2dui , j ,k5224ui , j ,k12~ui 11,j ,k1ui 21,j ,k1ui , j 11,k

1ui , j 21,k1ui , j ,k111ui , j ,k21!1ui 11,j 11,k

1ui 11,j 21,k1ui 11,j ,k111ui 11,j ,k21

1ui 21,j 11,k1ui 21,j 21,k1ui 21,j ,k11

1ui 21,j ,k211ui , j 11,k111ui , j 11,k21

1ui , j 21,k111ui , j 21,k21 . ~A4!

This method has two main advantages compared with
classical seven-point formula. First, its stability limit allow
greater time steps and therefore the computing time in s
of the additional operations involved in the Laplacian eva
ation is found to be 1.3 times smaller. Second, the error m
when evaluating the diffusion operator is isotropic at t
dominant order~order dx2), whereas with the seven-poin
formula it depends on the grid orientation.

No-flux boundary conditionsnW •¹W u50 are imposed on
the vertical sides of the box and either no-flux or period
boundary conditions are chosen on the top and bot
boundaries.

The position of the instantaneous filament in the horizo
tal planes is computed as the intersection of au50.5 and a
v50.75 (0.5a2b) isosurfaces.

APPENDIX B: SPIRAL DRIFT IN AN EXTERNAL FIELD

In the presence of a small external fieldE, the spiral ro-
tation center drifts at a constant velocity proportional to t
field magnitude but at an angle with the field direction@37–
39# as given by Eq.~18! of the main text. The drift coeffi-
cientsa i anda' have been computed in the free bounda
limit ( e!1) both for small core@23# and large core spirals
@14#. We derive here a general formula@Eq. ~B10! below# for
the drift coefficienta5a i1 ia' as a matrix element be
tween the translation eigenvector (ut ,v t) of L and the cor-
responding right eigenvector (ũt ,ṽ t) of L.

With an added external fieldE, Eqs.~1! and ~2! read

] tu5¹2u1 f ~u,v !/e2EW •¹W u, ~B1!

] tv5g~u,v !. ~B2!

We choose a coordinate system with thex axis along the field
direction and corresponding polar coordinates (r ,u). We ana-
lyze the motion of a counterclockwise rotating spiral that
stationary, forEW 50W , in the rotating referential (r ,f) with
5-17
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f5u2v1t. Since ]x5cos(u)]r2sin(u)/r]u , the field term

EW •¹W u can be written in the rotating referential

2EW ]xu52EW @cos~f1v1t !] ru2sin~f1v1t !/r ]fu#,

52EW /2@exp~ iv1t !exp~ if!~] ru1 i ]fu/r !1c.c.#.

~B3!

As will be seen below, secular terms appear when thEW
term on the rhs of Eq.~B1! is treated in perturbation. Thei
origin is, of course, the induced spiral drift. Anticipating th
phenomenon, we suppose that the spiral rotates steadi
the frame with coordinates (r ,u) that drifts with respect to
the lab frame with coordinates (x,y). That is,

x5x0~ t !1r cos~f1v1t !, ~B4!

y5y0~ t !1r sin~f1v1t !, ~B5!

and

] tur ,f5] tux,y1v1]f1 ẋ0]x1 ẏ0]y . ~B6!

The supplementary terms proportional toẋ0 andẏ0 should be
chosen to cancel the unwanted secular terms. This d
mines the spiral drift. Explicitly, we rewrite Eq.~B6! using
the rotating coordinates as

] tux,y5] tur ,f2v1]f21/2@~ ẋ02 i ẏ0!exp~ iv1t !

3exp~ if!~] r1 i ]f /r !1c.c.#. ~B7!

Substitution of this formula in Eqs.~B1! and ~B2! and lin-
earization under the formu5u0(r ,f)1up exp(iv1t)1c.c.,
v5v0(r ,f)1vp exp(iv1t)1c.c. gives,

~ iv12L!S up

vp
D 21/2~ ẋ02 i ẏ0!S ut

v t
D 52E/2S ut

0 D .

~B8!

Multiplying by the left eigenvectorL of eigenvalueiv1
would show the need for secular terms if we had not int
duced the drift terms. Here, however, it simply determin
the drift as

ẋ02 i ẏ05E
^ũt ,ut&

^ũt ,ut&1^ṽ t ,v t&
. ~B9!

TABLE III. For b50.01, e50.025 and several values ofa, the
drift coefficients given by Eq.~B10! computed using the eigen
modes ofLkz

and of its adjoint and the drift coefficientsa i2 i a'

measured in direct numerical simulations.

a rhs of Eq.~B10! a i2 ia'

0.44 22.05 20.78i 21.9720.84i
0.62 3.520.47i 3.420.42i
0.7 1.5920.80i 1.6220.83i
04623
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Equivalently, this gives the sought formula for the drift c
efficients,

a i2 ia'5
^ũt ,ut&

^ũt ,ut&1^ṽ t ,v t&
. ~B10!

Values of drift coefficients given by Eq.~B10! compare well
with those obtained from direct numerical simulations~see
Table III!.

APPENDIX C: TWIST AND WRITHE OF A RIBBON

We recall the definition of quantities associated w
closed ribbons and some useful mathematical properties
analyzing the ‘‘sproing’’ bifurcation. In particular, we give
mathematical definition of the twist and its value in the ca
of a uniformly twisted ribbon with an helical central curve

The local twist of a ribbon is classically defined as@26#

t5S d

ds
~pW !3pW D • tW, ~C1!

where tW is the unit tangent vector to the mean curve of t
ribbon,s is the curvilinear coordinate along the mean curv
and pW is the unit vector perpendicular to that curve that
rects the line intersecting one of the edges of the ribbon.
twist measures the spatial rotation rate of the edges of
ribbon around the mean curve.

For a closed ribbon, the linking numberLk is the integer
that measures the entanglement of the two edges of the
bon. Lk is a topological invariant that is constant under
continuous deformation of the ribbon~as long as it does no
intersect itself!.

The linking number is related to the integral of twist by
formula @40# ~which has been popularized by its use in
molecular biology context!

Lk5Wr1
1

2pEs
tds. ~C2!

The writhing numberWr depends only of the mean curv
rW(s) of the ribbon and is equal to

Wr5
1

4pE dsE ds8
]srW~s!3]srW~s8!•@rW~s!2rW~s8!#

irW2rW8i3
.

~C3!

The tangent vector tor (s) traces a closed curve on th
unit sphere asr (s) goes around the ribbon. The writhin
number is also equal, up to an even integer, to the area
closed on the unit sphere by this closed curve divided byp
@41#.

An example of interest is the writhing number of a sing
turn of an helix of radiusR and pitchH ~linking the two free
ends by a non-self-intersecting planar curve to obtain
closed curve!. The tangent vectors curve encloses a spher
cap on the unit sphere of normalized area equal to
2cosu), whereu is the angle made by the tangent vect
with the vertical axis. This gives the writhing number~up to
5-18
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an even integer that is seen to be zero by using the contin
of Wr and the fact that the writhing number of a straight li
is equal to zero!,

Wr512
1

A11~2pR/H !2
. ~C4!

APPENDIX D: LINK WITH AVERAGED EQUATION

In Ref. @16#, equations were derived for the motion of th
mean scroll filament and the evolution of twist for a weak
twisted and weakly curved scroll wave. It was subseque
noted@12# that many coefficients in Ref.@16# original equa-
tions were identically zero and that only four nontrivial on
remained to be determined. This approach has recently b
extended to take into account fiber rotation anisotropy@33#.

In this appendix, we find it of some interest to explicit
relate the averaged equations of Refs.@16,12# to the compu-
tations that were performed in the main part of the pres
paper. One coefficient in the equations of Refs.@16,12# is
given by the quadratic scroll rotation frequency depende
at small twist@Eq. ~29!#. Unsurprisingly, the three other one
are given by the curvature of the rotation and translat
bands around the corresponding symmetry eigenvalues.
explicitly confirms that the sproing instability cannot be ca
tured in the limit considered to derive the averaged equat
since the instability takes place a finite distance away fr
the translation symmetry eigenvalues on the transla
bands.

We provide a simple-minded derivation of the equatio
Refs. @16,12# using a Cartesian frame instead of the mo
sophisticated intrinsic mean filament coordinates used
Ref. @16#. This limits us to consider a weakly inclined fila
ment but we can proceed very similarly to the derivation
spiral drift in Appendix B and the extension to nonisotrop
or nonhomogeneous medium is straightforward~but not con-
sidered here!.

We denote the fixed Cartesian coordinates by (x,y,z) and
by (r ,f,z) the cylindrical coordinates of a frame rotating
the 2D spiral frequency and centered on the mean filam
position (x0(t,z),y0(t,z)),
04623
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x5x0~ t,z!1r cos@f1v1t1c~ t,z!#, ~D1!

y5y0~ t,z!1r sin@f1v1t1c~ t,z!#. ~D2!

The corresponding relations between the time and vertica~z!
derivatives in the two referentials are thus

] tur ,f5] tux,y1v1]f1] tc ]f1] tx0]x1] ty0]y , ~D3!

]zur ,f5]zux,y1]zc ]f1]zx0]x1]zy0]y . ~D4!

These relations can be rewritten using]x1 i ]y5exp@if
1iv1t1ic(z,t)#@]r1i]f /r# and introducingw05x02 iy0,

] tux,y5] tur ,f2v1]f2] tc ]f2
1

2
@] tw0eif1 iv1t1 ic

3~] r1 i ]f /r !1c.c.#, ~D5!

]zux,y5]zur ,f2]zc ]f2
1

2
@]zw0eif1 iv1t1 ic

3~] r1 i ]f /r !1c.c.#, ~D6!

]zz
2 ux,y5]zz

2 ur ,f1~]zc!2]ff
2 22]zc]fz

2

2@]zw0eif1 iv1t1 ic~] rz
2 1 i ]fz

2 /r !1c.c.#

1
1

4
@~]zw0!2e2(iv1t1 ic)@eif~] r1 i ]f /r !#21c.c.#

1
1

2
u]zw0u2¹2D

2 2
1

2
@]zz

2 w0eif1 iv1t1 ic~] r1 i ]f /r !

1c.c.#2]zz
2 c ]f1]zc@]zw0eif1 iv1t1 ic

3~] rf
2 1 i ]ff

2 !1c.c.#. ~D7!

With Eqs. ~D5! and ~D7!, the governing reaction-diffusion
equations~1! and ~2! become
~] t2v1]f2¹2D
2 !u2 f ~u,v !/e5] tc ]fu1

1

2
@] tw0eif1 iv1t1 ic~] ru1 i ]fu/r !1c.c.#1]zz

2 u1~]zc!2]ff
2 u22]zc]fz

2 u

2@]zw0eif1 iv1t1 ic~] rz
2 u1 i ]fz

2 u/r !1c.c.#1
1

4
@~]zw0!2e2(iv1t1 ic)

3@eif~] r1 i ]f /r !#2u1c.c.#1
1

2
u]zw0u2¹2D

2 u2
1

2
@]zz

2 w0eif1 iv1t1 ic~] ru1 i ]fu/r !1c.c.#

2]zz
2 c ]fu1]zc@]zw0eif1 iv1t1 ic~] rf

2 u1 i ]ff
2 u/r !1c.c.#, ~D8!
5-19
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~] t2v1]f!v2g~u,v !5] tc ]fv1
1

2
@] tw0eif1 iv1t1 ic

3~] rv1 i ]fv/r !1c.c.#. ~D9!

For a weakly curved and weakly twisted scroll wave, the
of Eqs.~D8! and~D9! can be treated in perturbation startin
from the 2D spiral fields (u0 ,v0). At first order, the inhomo-
geneous rhs are a superposition of time-independent te
and of terms oscillating at frequenciesv1 and 2v1. One can,
therefore, seek (u,v) in perturbation as

S u

v D 5S u0

v0
D 1F S u1

(2v1)

v1
(2v1)D e2iv1t12ic1c.c.G

1F S u1
(v1)

v1
(v1)D eiv1t1 ic1c.c.G1S u1

(0)

v1
(0)D , ~D10!

where (u1
(2v1) ,v1

(2v1)), (u1
(v1) ,v1

(v1)), and (u1
(0) ,v1

(0)) are
time-independent functions characterizing the three differ
first-order perturbative corrections.

The 2v1 functions obey

~ i2v12L!S u1
(2v1)

v1
(2v1)D 5

1

4
~]zw0!2S @eif~] r1 i ]f /r !#2u

0 D .

~D11!

The operator (i2v12L) is invertible and the 2v1 functions
(u1

(2v1) ,v1
(2v1)) can be determined. They simply describe t

inclined circular core that is viewed as elliptical in the ch
senx-y coordinates~these terms are absent in the filame
coordinates used in Ref.@16# where in effect]zw0 is zero!.

On the contrary, thev1 and constant functions arise from
resonant forcing and can only be determined when solva
ity conditions are verified.

The v1 functions obey

~ iv12L!S u1
(v1)

v1
(v1)D 5

1

2
] tw0S ut

v t
D 2

1

2
]zz

2 w0S ut

0 D
1]zc ]zw0S eif~] rf

2 u01 i ]ff
2 u0 /r !

0
D .

~D12!

Since (ut ,v t) is an eigenvector ofL with eigenvalueiv1,
Eq. ~D12! is solvable only if its rhs has no component on th
eigenvector. More explicitly, one obtains by multiplying E
~D12! by the associated left eigenvector,

] tw02]zz
2 w0

^ũt ,ut&

^ũt ,ut&1^ṽ t ,v t&

1]zc ]zw0

^ũt ,eif~] rf
2 u01 i ]ff

2 u0 /r !&

^ũt ,ut&1^ṽ t ,v t&
50.

~D13!
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The last term on the lhs should vanish by rotational inva
ance since simply inclining a twisted scroll cannot induce
drift. This explicitly follows from Eq.~34! since

^ũt ,eif~] rf
2 u01 i ]ff

2 u0 /r !&5^ũt ,~11 i ]f!ut&50.
~D14!

Equation~D13! ~without the last term! is the equation of
motion for the mean filament obtained in Refs.@16,12#. In
the limit considered, the mean filament motion is indepe
dent of the scroll twist and only depends on the filame
curvature (]zz

2 w0) with a coefficient that gives both the sma
kz

2 dependence of the translation bands@Eq. ~23!# and spiral
drift in an external field@Eq. ~B10!#.

The time-independent component (u1
(0) ,v1

(0)) of the first 0
correction~D10! obey

2LS u1
(0)

v1
(0)D 5] tcS ]fu0

]fv0
D 2]zz

2 cS ]fu0

0 D 1~]zc!2S ]ff
2 u0

0
D

1
1

2
u]zw0u2S ¹2D

2 u0

0
D . ~D15!

Again since the rotation mode is an eigenvector with eig
value zero ofL, this equation can be solved only if

] tc2]zz
2 c

^ũf ,uf&

^ũf ,uf&1^ṽf ,vf&
1~]zc!2

^ũf ,]ff
2 u0&

^ũf ,uf&1^ṽf ,vf&

1
1

2
u]zw0u2

^ũf ,¹2D
2 u0&

^ũf ,uf&1^ṽf ,vf&
50. ~D16!

Rotational invariance again implies that the last term on
left-hand side~lhs! of Eq. ~D16! vanishes~since simply in-
clining a scroll wave cannot change its rotation frequency! as
explicitly shown below @Eq. ~D18!#. The remaining Eq.
~D16! is the equation obtained in Refs.@16,12# for the scroll
twist dynamics. The coefficient of (]zc)2 simply describes
the twist dependence of steady scroll rotation frequency@Eq.
~29!# while the coefficient of]zz

2 c governs the smallkz
2 de-

pendence of the rotation band@Eq. ~23! with the subscriptt
replaced byf#.

The computations reported in the present paper permi
to explicitly evaluate the four real coefficients that appear
Eqs.~D13! and ~D16!. For example, fora50.8, b50.01, e
50.025, the reported results give

^ũt ,ut&

^ũt ,ut&1^ṽ t ,v t&
50.88422 i0.662,

^ũf ,uf&

^ũf ,uf&1^ṽf ,vf&
50.578,

^ũf ,]ff
2 u0&

^ũf ,uf&1^ṽf ,vf&
520.7203. ~D17!

More generally, the two coefficients in Eq.~D16! do not
change sign as one traverses the different regions of
phase diagram: a small twist increases the scroll rotation
5-20
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quency and a small modulation in thez direction increases
the stability of the rotation band modes. The complex co
ficient of Eq.~D13! is directly linked to the scroll wave line
tension stability/instability and its real part change sign
2D spiral drift.

Finally, it may be worth comparing the above derivati
to that of Ref.@16#. Since the lhs of Eq.~D10! is a superpo-
sition of terms with different time dependences, this is a
the case of its solution and many coefficients formally int
duced in Ref.@16# do not even appear in our derivation,
previously noted in Ref.@12# ~in a slightly different formu-
lation!. On the other side, we have chosen a simple par
etrization for which rotational invariance is not manifest,
contrast to Ref.@12#. This forces us to explicitly show tha
coefficients that do not appear in Ref.@12# vanish.

We conclude by showing that indeed
ia

I

R

ut.

,

he
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^ũf ,¹2D
2 u0&50. ~D18!

This is a simple consequence of the transformation prop
of the reaction-diffusion equations~5! and~6! under dilation.
Namely, (u0(r (11h),f…,v0„r (11h),f…) is a solution of
Eqs. ~5! and ~6! with ¹2D

2 replaced by 1/(11h)2¹2D
2 . Ex-

panding for h!1 gives the infinitesimal version of thi
transformation

LS r ] ru0

r ] rv0
D 52S ¹2D

2 u0

0
D , ~D19!

which can also be directly checked by differentiating Eqs.~5!
and~6! with respect tor. The multiplication of Eq.~D19! on
both sides by (ũf ,ṽf), the left eigenvector ofL of eigen-
value zero, gives the desired identity~D18!.
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