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Scroll waves in isotropic excitable media: Linear instabilities, bifurcations, and restabilized states
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Scroll waves are three-dimensional analogs of spiral waves. The linear stability spectrum of untwisted and
twisted scroll waves is computed for a two-variable reaction-diffusion model of an excitable medium. Different
bands of modes are seen to be unstable in different regions of parameter space. The corresponding bifurcations
and bifurcated states are characterized by performing direct numerical simulations. In addition, computations
of the adjoint linear stability operator eigenmodes are also performed and serve to obtain a number of matrix
elements characterizing the long-wavelength deformations of scroll waves.
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[. INTRODUCTION consider in Sec. Il a straight untwisted scroll wave. It is the
simplest(i.e., z-independentextension in the thirdz-) di-
Depolarization waves in cardiac muscle, oxidation wavesnension of a two-dimensionak{y) spiral wave. At the lin-
in the Belousov-ZhabotinskyBZ) chemical medium or at ear level, two possible types of instabilities are found. Modes
the surface of certain metal catalyst and cAMP waves irwith positive real parts can be observed on the translation
colonies of slime molds are different examples of wavebands, which correspond wdependent translations of the
propagation in excitable medja]. They can be described in 2D spiral in the differentx-y planes, or on the meander
similar mathematical terms although the underlying pro-bands, which come fronz deformations of the 2D spiral
cesses are of a very different nature. In a two-dimensionaheander modes. At the nonlinear level, the translation band
(2D) or quasi-two-dimensional situation, the propagation ofinstability gives rise to a scroll wave with a continuously
spiral waves has been observed in these three cases as Wsltending corg 11,12 and does not lead to a restabilized
as in other excitable medid.,2]. Aside from their intrinsic  honjinear state. We confirm that this type of instability is
scientific interest, the potential role of these remarkablqjirecﬂy related 14] to the drift direction of a 2D spiral in an

waves in cardiac arrhythmias and fibrillatip8] has moti- o, 4emna field. In contrast, the meander band type of instabil-

vated detailed studies of their properties during the past tW?[y [15] generally restabilizes in a distorted scroll wave and

decades. In particular, the mechanisms of different mstablh—no simple relation to 2D spiral drift is observed.

ties have been intensively investigated as well as their loca- In Sec. IV, we consider twisted scroll waves. A 3D steady
tions determined in parameter space of simple mo ) o o .
b P P bet wave is built by rotatindi.e., twisting the 2D spiral around

and of experiment§g]. , . | it al rirecti
The potential relevance to cardiac dysfunction of scroll'tS fotation center as one translates it along 2furection.

waves, the three-dimensional analogs of spirals, has aIsWe find that twist exceeding a defin_ite threshold can lead to
been emphasizefi7] but their dynamics is still less thor- the appearance of u_nstable_modes in the t_r_ans_lanon bands of
oughly analyzed. Visualization of the BZ reaction in 3D gelsthe scroll wave. This “sproing10] instability is seen to
[8,9] has confirmed the existence of these complex wavedake place a finite wave vector away from the scroll wave
Numerical simulations have revealed that they are prone t§anslation symmetry mode. We provide analytical arguments
instabilities in several parameter regind®—13. In order  that show that this very generally results from 3D rotational
to more systematically analyze the different possible instainvariance in an isotropic medium. Nonlinear development
bilities, we report here the result of computations of the fullof this instability when a single unstable mode is present
linear stability spectrum of a straight scroll wave in a simpleresults in a restabilized helical wave, as previously described
two-variable model of an excitable medium. This enables u$10]. Properties of these nonlinear states are computed and
to follow the different modes of deformation of a scroll wave compared with the linear characteristiggave vector, fre-
and to investigate which type of modes become unstable iquency of the sproing instability. When several unstable
different regions of parameter space. The modes of the adnodes are present in the simulation box, the scroll wave core
joint operator are also determined in order to compute thdilament takes a more complex shape that is found to travel
value of several coefficients given by matrix elements and tdike a nonlinear wave of constant shape in the vertical direc-
check proposed analytic relations. In addition, direct numerition. Three appendices provide the details of our numerical
cal simulations are performed to investigate the nonlineaalgorithms, a derivation of a general formula for spiral drift
fate of the different instabilities and to provide a detailedin an external field and useful ribbon geometry formulas. A
characterization of the restabilized bifurcated stdtgsen  fourth one explains the relation between the present calcula-
they exis}. tions and previously derived averaged equations for the mo-
In Sec. Il, we define the studied two-variable reactiontion of a weakly curved and twisted scroll wajg6,12,.
model and explain our numerical methods. Some general The results of our linear stability analysis have previously
properties of spiral waves are also recalled. Then, we firsheen briefly described in Ref17].
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0.03 B. Numerical strategy

In order to obtain the steady scroll waves and compute
their stability spectrum, Eq$l) and(2) are written in cylin-

0.02 ; : . ‘

drical coordinates withu and v functions ofr, ¢= 60— wt
2 - 13Z,t, andz,
001 * (O 27305 U= (0 g+ 7205 4+ Vi) U+ F(U,0)/ €,
()
0

0w =wdgw+g(u,v). @

FIG. 1. Spiral bifurcation diagram for Eqél) and (2) with € 1. Steady states

=0.025 and the reaction terms of REE9]. The bold linedM is the

meander threshold instability line and separates steadily rotatinﬂ
spirals from meandering spiralgboveb=0.02 the thin line de-
notes our less accurate determinationd®). The line JR marks
the boundary of spiral wave existence on the leféBfthe wave tip
retracts(see, e.g., Ref(14]). The symbols along the link=0.01

A steady scroll wave for a given imposed twisf, is a
me-independent solution of Egs(3) and (4) with
u(r,o,t,z)=ug(r,¢) andv(r,o,t,z)=vy(r,¢) and rotation
frequencyw = w1,

denotes the different parameters at which scroll waves are studied (V§D+ w1d4+ 75v‘9<215¢)u0+ f(ug,v0)/€=0, ®)
in the present work. Staf) represent stable scroll waves; crosses
(X) and pluses ) meander-unstable scroll waves; circigs), 010400+ 9(Ug,v0)=0. (6)
and (@) translation-band-unstable scroll waves. 2D meandering
spirals are represented by-§ and(O). This nonlinear fixed-point problem for the functian, v,
and nonlinear eigenvalue; is solved by using Newton'’s
Il. METHODS AND GENERAL RESULTS method after discretization of Eq&) and(6), as detailed in
Appendix A. It should be noted that Eq&) and (6) are
A. Reaction-diffusion model purely two-dimensional due to the scroll wave translation

Two-variable reaction-diffusion systems have been show§ymmetry along the axis in the introduced coordinates.
to describe semiquantitatively spiral waves dynamics and its
“generic” features. They have been used in various contexts
since their original introductiof18] as a simplification of Once a steady scroll wave is obtained, one can linearize
Hodgkin-Huxley dynamics. The analysis of such a simpleEgs.(3) and(4) around it. Invariance of Eq$3) and(4) and
model appears in any case as a useful first step before going the steady state by translation along #direction(in the
to a more complicated description if required. We thus fol-introduced twisted rotating framéeads to the decomposi-
low this classic path and take for the excitable medium dy+ion of a general perturbation depending on the three spatial
namics coordinates on its Fourier components along ztexis. We

SU=V2u+t / 1 thus consider perturbations under the form=u,

w=Vautf(uuv)le, @ 4 exgolk)t — ikzuy(r, ), v = vo + exgo(k)t—ik,zZvx(r, ).
The linear equations obeyed by.(v,) and the(complex
growth ratea(k,) read,

2. Linear stability

dv=9g(u,v). (2)
oUy = (= K2+ 2i 7 K0 g) Uy + (019 4 7505 4+ Vp) Uy
We only consider the singly diffusive case, the most relevant
to cardiac physiology. For definiteness, we also choose reac-
tion termsf(u,v)=u(1—u)[u—(v+b)/a]l, g(u,v)=u—v
as proposed in Ref19]. This permits fast direct simulations
and tests of our numerics by comparison with previous re- .
sults for spiral waves. The 2D-spiral bifurcation diagram for°" symbolically,
this model is shown in Fig. 1 for variable values of the pa- u u
rametersa andb at a fixed value ok=0.025. The meander a-(kz)< 1) =Ly ( 1)_ (9)
instability line ()M with the notation of 5]) is plotted with U1 “\U1
its “large core” branch at smaller values afthan its “small . _
core” branch. The crossing line that separates meander tra- SO in a second step, the-(L0) eigenvalues of largest real
jectories with outward petals from those with inward petalsParts of Ly are precisely determinedor givenk, and 7,)
is also drawn as well as the diverging core existence boundising an iterative algorithif20] detailed in Appendix A. The
ary of spiral waves {R). whole numerical procedure is quite similar to the spiral lin-
In the following, the stability and dynamics of scroll ear stability analysis of Ref21] and extends it to 3D. It
waves are analyzed at several points along thebin®.01, should be noted that the twist ratg, can be prescribed at
asa varies and crosses the different boundaries. will so the procedure is not confined to weak twisif

+[dyf(ug,vo)us+d,f(Ug,vg)v1]/e, (7)

001= 19401+ 9,9(Ug,v0)U1 +3,9(Ug,vg)vy,  (8)
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course, for too large a twist, a steady scroll may no longemode, is a solution of Eq$7) and(8) for k,=0 ando=0.
exist and the Newton steady state finding procedure fails to The eigenmodes associated with invariance uneatey)(
converge. translations of the spiral rotation center are less straightfor-
Two points are worth emphasizing: wardly obtained because the spiral is a time-independent so-
Taking a Fourier transform has eliminated thdirection  lution in a rotating frame[with (x’,y’) coordinate§ A
so Egs.(7) and (8) are purely two-dimensiongbut k, de-  steady spiral rotating around the origin is given by
pendent as the steady state equatidh$ and (6),
Correlatively, each mode of the 2D spiral is replaced by a ~ UolX",y'1= U cog w1t)x+sin(w;t)y, = sin(w;t)X
band of modes indexed by the wave vedtgr
Some general properties of the spectrum can be noted at Feoday] (10
this stage. The corresponding spiral rotating around the poiqt,{o) is
For zero twist, Eqs(7) and(8) depend only ok so the  then P gsp g Poxg o)
spectrum bands are even functionskgf Moreover,L,_is a

real operator and its complex eigenvalues come in completol O w1t)(X—Xg) +sin(w1t) (Y —Yo), = SinN(@1t) (X—Xo)
ggngiﬁti(()%c.)l palrs.'So, bands of complex modes also +cog ) (Y—Yo) .
plex conjugate pairs.

For nonzero twist ,#0), these symmetries no longer ysing the &’,y’) rotating coordinates, this translated spiral
hold. It only remains true thaf, = £* _ . So bands of com- 545

plex modes can be grouped in paiss(k,),o,(k,) with

ayo(ky) =07 (—ky). Ug[ X' —Xg cog w4t) — Yo Sin(wqt),y’ +Xq SiN(w4t)
3. Direct numerical simulations and instantaneous —YoCogw;t)]
filament definition .
U xr— %Yo i '
In order to determine the bifurcation type and the fate of =Ug X' —| —5—expliot) +c.cly
each instabilities, we performed direct numerical simulations
of Egs. (1) and (2) as explained in Appendix A. In two di- Xo— 1Yo .
mensions, it is usual to define the spiral tip as the intersection | exiet)+Cc . (11)

point of two (somewhat arbitragyparticular level linesu

=Uiip , U =0yjp - The spiral tip trajectory is then a convenient Expansion of Eq(11) for small (xo,yo) gives the expression
way to visualize the spiral dynamics and its core instabilitiesof the translation modes

Similarly in 3D, we choose here to define the instantaneous

filament as the intersection line of the two particular level U\ [ (9 Fidy)ug i) dUgFidgUglr
. - o = . =exp(i .
surfacesu—utip—o_.S andv—_vtip_—o._75(0.&_— b). It can be vy (9 +idy)vg dvotidguolr
thought of as the line of spiral tips in the differeay plane. (12
C. Special eigenmodes with eigenvalue w,, and the complex conjugate eigenvector

In the 2D case, there are five dominant modes of szpiraY‘”th eigenvalue—iaw,.

dynamics in the simple case described by Hds.and (2) This computa_tio_n immediately general_izes to untwisted
[22]; scroll waves. This is also the case for twisted scroll waves

but one should recall that Eq&) and (6) are written in a
referential that rotates in time but also as one moves along
the z axis. This modifies the exponential factor in Ha1)
which becomes expf;t+7,2) to include thez rotation. So,

for a twisted scroll wave the translation modg (v;) is an
F_igenvector ofﬁkz, . with eigenvalueiw,. The other

=-r

One neutral mode witlr=0, the rotation mode, which
comes from the rotational invariance of E¢3) and (4).

Two complex conjugate purely imaginary modes with
= *iw,, the translation modes, coming from the translation
invariance of the starting equatiofi and (2).

Two complex conjugate modes, the meander modes, co
responding to the oscillatory meander instability, the real parfcomplex conjugatetranslation eigenvectoruf ,vy) is as-
of which crosses zero on the meander instability line. sociated with the eigenvalueiw; of the nowdifferentlin-

In the following, the five bands of modes originating from ear operatorﬁkZ: T
these special modes are found to play the most important A direct algebraic proof of these facts can be given. If
role in scroll wave dynamics in the sense that they have thenes defines the two operators
largest real parts and that each instability of a scroll wave

can be ascribed to one of these bafids., the modes on a T=expio)(d,+ilrd,),
part of that particular band acquire a positive real part
Thus, before proceeding, it is worth recalling the expres- M=w1d4+ 75354+ Vip, (13
sion of these symmetry eigenmodes for spifals| and their
straightforward generalization for scroll waves. a direct computation gives the commutators
The rotation mode is the simplest. Differentiation of Egs. _ ) _
(5) and (6) directly shows that d4Ug,d4v0), the rotation [TM]=—ioT—1(1+2id4)T,
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FIG. 2. Contour plots of the translation eigen-
mode. (a) u-component modulusib) v-compo-
nent modulus, and of the corresponding left ei-
genvector, (c) u-component modulus, (d)
v-component modulus. The maximum value of
the fields is set independently foandv equal to
1, and the contours are plotted f@) u=0.01,
0.05, 0.1, 0.3, 0.4, 0.5, 0.6, and 0(B) v =0.01,
0.05, 0.1, 0.2, 0.4, 0.6, and 0.8) and(d) u,v
=0.0001, 0.001, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, and
0.9. The parameter values aae-0.44,b=0.01,
and e=0.025. The pulsation of the steady rotat-
ing spiral isw=1.1612. The circles represent the
limit of the simulation box.

-4
-6
-8
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[T,d4]=—iT. (14 oUy=(— w134+ Vip)Us+,f (Ug,00) Uy /€

With these notations, the fixed-point equations réad, T 0u8(Uo,v0)vs, (16)

+f(Ug,v9)=0, ®1d4v0+g(Ug,v0)=0. Action of T on
these two equations givesTMuy+d,f Tug+d,f Tug ~ ~ - ~
=0,w1Tdgvo+ dyg T+ d,9 Tvo=0. Commutations ofT ov1= —w1d4v1+ 3, F(Ug,v0)U1/ €+ 3,9(Ug,v0)v1.
andM (in the first ong¢ and T and 4, (in the second one (17)
using Eq.(14) directly show that §,,v;)=(Tug,Tv) Ssatis-
fies Egs.(7) and (8) with o= +iw,; andk,= —7,,. . .
The result of one such computation for the left translation
eigenmode §;,v,) [the solution (i;,0,) for c=iw,] is
D. Left eigenvectors and scalar product shown in Fig. 2. In contrast to the translation mode, ¢.),
The linear stability computation can be extended to deterthe left eigenmodel;,v,) quickly decreases away from the
mine the left eigenvectors dIk We have found it worth in  spiral core as argued in Rgfl2] and explicitly obtained in
particular to compute the left elgenvectors of the 2D spiratthe free-boundary limif14,23 (but opposite to what is sup-
Stabmty operatorl (| e., Ek -0 for Tw= 0) Correspond|ng to posed In Ref[lG]) This also holds for the left rotation mode
the translation and rotation modes since they often appear itHs v 4) [the solution {i; ,v,) for o=0] as shown in Fig. 3.
perturbation calculation[16,12 (for examples, see Sec.  As a consequence, the scalar proddd) between these
[l A 1 and Appendix D. left functions {1,v) and any right function ; ,v,) (even
We S|mp|y define the scalar product between a |§ﬁ;q SlOle ianeaSing is well dEﬁnEd]: We do not find it useful
and right @, ,v,) two-component function by integration t0 include a time integration in the scalar product as in

over the whole 2D space 48,u;)+(v,v,), where (16,12

<f19>EJ f drdgrf(r,¢)g(r,¢). (15) The fast decay of the left eigenmodes makes the space integra-
tion converge without any additional factor. Adding one such extra
factor as suggested in RéfL6] would actually make all the scalar
The left eigenmodes of thus obey product vanish.

046235-4



SCROLL WAVES IN ISOTROPIC EXCITABLE MEDIA: ... PHYSICAL REVIEW BE55 046235

FIG. 3. Contour plots of the rotation eigen-
mode. (a) u-component modulus, (b)
v-component modulus, and of the corresponding
left eigenvector,(c) u-component modulus(d)
v-component modulus. The maximum value of
the fields is set equal to 1 and the contours are
plotted for(a) u=0.001, 0.1, 0.3, 0.5, and 0.{h)
v=0.001, 0.1, 0.2, 0.4, 0.6, and 0(8) and(d) u,
v=0., 0.001, 0.01, 0.1, 0.3, 0.5, 0.7, and 0.9. Pa-
rameters are the same as those in Fig. 2.

. UNTWISTED FILAMENTS this steady scroll is plotted in Fig.(@nly the upper quadrant
upper k,>0,Im(o)>0 is shown since the other quadrants
can be deduced by parity and complex conjugatidhe five
translation, rotation, and meander modes of the spiral wave
stand atk,=0. The steady spiral is stable as shown by the
negative real parts of the meander modes. As stated above,
the spectrum around the scroll wave is organized in several
bands of modes which originates from the spiral modes at
k,=0. Only the five less stable bands are shown in Fig. 4. At

8aadiTrw + these parameter vall_J_es, extension to the third dim.ension does
-0.05 ‘h**:- 1.9 W not bring any instability(at least at the linear levesince as

* + seen on Fig. 4 the real part of(k,) becomes more negative

+* on each band ds, increases.
+* For other parameter values, a straight scroll wave can,
however, be unstable while 2D spiral are stable. This can
‘°°°°°°°°°Ooo°°°° happen in two different ways. Depending on position in pa-
—ous °o 17)°°°°°°°°°°°°°ooooh' rameter space, either the translation or the meander bands

0 0.25 0.5 "o 0.2 0.4 become unstable fdr,#0. We examine these two cases in
@ k ®) K, turn in the following two subsections.

We begin with the simplest case of scroll waves with no
twist (7,=0). In this case, the steady scroll equatidbs
and(6) are clearly identical to those of a 2D spiral. We take
as an example the parameter vahe 0.9, b=0.01 (and e
=0.025). A steady spiral/scroll wave is found for a rotation
frequencyw,=1.769. The linear spectrum of modes around

[ ]
[
3

Re(o)
Im(c)

-0.25 1.8

-
Lesrtt

FIG. 4. (a) Real and(b) imaginary parts of the growth rate
o(k,) as a function of the wave numbéy, for the translation A. Translation band instability

(+), rotation @), and meander@) bands. The parameter values .
area=0.9, b=0.01, ande=0.025. Figure &) shows that the me- The translation bands can have unstable modeskjor

ander mode dit,=0 is stable and that the growth rate decreases on7to while t_he 2D splr_als ‘_"‘re stable. An example of this phe-
the meander band witk, . The translation mode is also restabilized NOMenNoN is shown in Fig. 5 fon=0.44, b=0.01, ande

for finite values ofk,. The translation and meander bands are well =0.025. A qualitatively similar spectrum is obtained for all
approximated respectively by (k,)=i1.769+ (—0.65+i0.61)k> points in Fig. 1 denoted by filled dot®() near the large core
and o y(k,) = —0.3411i1.720+ (—0.25+i0.01k2. The value of  Spiral existence boundadR. As seen in Fig. 5, the instabil-
o¢(0) is in good agreement with the independently determined pulity takes place for smak, as soon a%, is nonzero. It cor-
sation of the steady scroll wave,=1.769. responds to the “negative line tension” instability of Ref.
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0.2 24 Equation(19) is simply derived by a first-order perturbative
calculation as follows. The linear eigenvalue probléf(8)
reads

Uz
0

Uz Uy
a(kz)<vl)=—k§ + Ly —o Ul). (20)

For smallk,, the modes of the translation bands can be
obtained by perturbation around the known translation
modes ak,=0 [Eqg. (12)]. For definiteness, we consider the
upper band[which start ato(k,=0)=+iw;] and write

FIG. 5. (a) Real andb) imaginary part of the growth raie(k,) @ (KJ) =i+ 6o, where §o<1 is the sought perturbative
as a function of the wave number for the parameter vadue COrrection,
=0.44,b=0.01, e=0.025. The meander mode&)] is stable and
the growth rate decreases with the wave number on the meander ug Ut ouy
band. The modes of the rotation ban®), are also stable. The = Svq)
mode of the translation band+(), are unstable for finite values of

@ k, (b) k,

(21)

U1 Ut

K, Substitution in Eq(20) gives
] U ouy Uy ouy
[12]. We show below that the curvature of the translation So +iwg =—k2 +Ly o . (22
Ut 51}1 0 z 501

modes ak,=0 is given by the spiral drift coefficients in an
external field. So, this translation band instability is directly ) ) ) ) ]
related to the fact that 2D spiral drifts opposite to an applied e first-order expression afo is obtained in a usual way
external field in this parameter region. by taking the scalar product of E€R2) with the left eigen-
vector U;,v;) of Ly 0 for the eigenvaluéw; (Sec. Il D
1. Long-wavelength stability and 2D spiral drift
in an external field ~
2 <ut vut>

oo=—Kk;—= — .
(Ug, U+ (v, vy)

As recalled and shown in detail in Appendix B, a small (23

applied external fieldE induces a drift of the spiral rotation

center at a velocity such that Equation(23) is equivalent to the announced formuylEo)

since the matrix coefficients on its right-hand sides) also
v=aE+a, 0 XE, (18)  gives the spiral drift coefficients, as shown in Appendix B
[see Eq(B10)].
In Table |, the spiral drift coefficienta) anda, are com-

wherew;, is the spiral rotation vector. It has previously been ) .
noted[14] that a weak scroll wave curvature acts as an eX_pared to the results of independent computations of the cur-

ternal field and, therefore, that a straight scroll wave is un—Vaturel.Of‘;(kZ) atfgfot fgrﬁthe t:ans:anon ?;:m_cli_i, from ((j?ll-
stable ifa <0 since a small curvature tends to grow. More 290nalizations oL, at difierent values ofa. 1he goo

precisely, the smak, behavior of the two translation bands agreement between these results i_s a check both of the ana-
is given by lytic formula (19) and of our numerics.

To recapitulate, the translation band instability is found to
) ) 5 4 be a long-wavelength instabilityi.e., the band of unstable
o:(k)=Fiw+(—gqFia,) kz+0O(ky). (19  wavelength starts at,=0) which is present in the whole

TABLE |. The scroll wave pulsatiow,, half the second derivative{ (k,=0)/2 of the translation band at
k,=0 [with 0¢(0)=iw,], half the second derivative,(k,=0)/2 of the meander band &,=0 [with
Im{o,(0)}>0] and the drift coefficients of the 2D spiral in an electric fielg—ia, for b=0.01, €
=0.025 and different values @f.

a wq o{(k,=0)/2 om(k,=0)/2 a—ia;
0.44 1.16 1.9-0.82 —-1.6+0.78 —1.97-0.84
0.48 1.38 3.20.44 —-3.7+1.10 —3.0-0.49
0.67 1.76 —2.14+0.85 1.61+0.25 2.2-0.9
0.7 1.78 —1.63+0.83 1.04+0.21 1.62-0.83
0.8 1.81 —0.87+0.70 0.08-0.06 0.854-0.71
0.9 1.77 —0.65+0.61 —0.25-0.089 0.66-0.61
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Re(c)
®o

©
+
+ 1
L]
©

0% 0.4 0.8 =015, 0.4 0.8
(a) k (b) k

FIG. 7. The growth rate Re(k,)] as a function of the wave
number for the parameter valye) a=0.7 and(b) a=0.67. (b)
The other parameters ate=0.01 and e=0.025. The meander
mode, ©), is stable fokk,=0 both in case$a) and(b). The growth
rate increases on the meander band With In case(a), it always
remains negative and there is no instability. In cégeit becomes
positive fork, higher than 0.30 and lower than 0.69 showing the
finite-k, instability of the steady scroll wave. The rotatio®) and
translation bands+) are stable. In the phase diagrdFfig. 1) the
points with a spectrum similar to thp) case are represented by
crosses X).

-0.1 o
tl’fP > +++ ..o

FIG. 6. Instantaneous filament evolution starting from a slightly
perturbed straight scroll for equally spaced times 25, t=50, t
=75, andt=100) during a simulation in a simulation box of size
(128x128x120) with a space discretization stefjx=0.2 using
periodic boundary conditions. The parameters are0.44, b

=0.01, ande=0.025 and correspond to the linear spectrum shown . .
in Fig. 5. the instability developmentbut, apart from that, was not

observed to qualitatively modify the instability nonlinear de-
velopment. This critical size was found to be twice bigger
domain of parameters where a 2D-spiral drifts oppositefor periodic boundary condition than for no-flux boundary
[given our sign convention in E4B1)] to the applied field. conditions that can accommodate linear modes of wave-
length twice as long as the box height.
2. Nonlinear evolution of the instability

The nonlinear fate of this translation band instability was B. The third-dimension-induced meander instability
studied by direct dynamical simulations of E4$) and(2). . . . .
In the parameter regime of Fig. 5 when modes of the trans: In the region where a 2D spiral drifts toward an applied

lation bands are unstable for finite valueskgf an initially field (i.e., >0), the modes of an untwisted scroll wave

straight scroll wave was observed to be unstable provideBr"’mSk"t'on bands are stable. As pointed out in RES], an

that the simulation box was large enough to accommodate a%nthsted sqroll wave can none.thek'ass be unstaple In a pa-
meter region where a 2D spiral is stable. This happens

unstable mode. In agreement with previous observation® - LA
[12], the filament was observed to increasingly depart fron‘{v;’]hendt.he r.“ea”der bandds abrel destabilized by deformation in
its straight initial configuration and its length was observed ez direction as we study below.
to grow in the simulation box. When the filament eventually
collided with the boundaries of the simulation box, it split
into two filaments. This repeated again and no restabilization This induction of the meander instability by three-
was observed. A typical evolution is shown in Fig. 6. dimensional effects is shown in Fig. 7. For the parameters of
The minimum simulation box size that allowed the insta-Fig. 7(&), all modes have negative real parts and the scroll
bility development closely agreed with the results of the lin-wave is stable. However, one sees that the real part of the
ear stability analysis. For instance, in the case0.44, b  modes on the meander band starts by increasini, as-
=0.01, ande=0.025, the maximak, of the unstable band is creases from zero. For the parameters of Figp) Which
obtained to bek,=0.84 via the linear stability analysis Stand closer to the 2D meander boundary, a finite band of
whereas the direct numerical simulations show a minimamodes withk,# 0 has acquired a positive real part while the
simulation box height corresponding kg=0.812 real part of 2D spiral meander modelgt=0 is still nega-
The choice of boundary conditions on the simulation boxtive. Thus, for these parameter values close to the “small

top and bottom faces influences the minimum box height focore” side of the 2D meander instability boundary, a 3D
scroll wave is unstable to meander while the steadily rotating

2D spiral is still stable as pointed out in REL5].
%For the observed largest unstaklg numerical simulations were On the “large core” side of the meander instability
not carried out long enough to observe the full nonlinear developboundary, three-dimensional modulations have on the con-

ment of the instability. However, it was observed with increase oftrary a stabilizing effect on the meander instability and the
the box height of a single space step. 2D and 3D meander instability thresholds coincide as shown

1. Linear analysis
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o

Re(o)

Re(c)

0.2 25 numerical simulations, the restabilized nonlinear states
L3 ++"'+j
++++ +++""+ Two different ones were implementegho-flux boundary
conditions were always implemented on the side bound-
o mit the development of a single pair of unstable modes and
are simpler to analyze or no-flux boundary conditions since
-0 1 We describe the results in turn.
% 0.8 0 0.4 0.8
tions were performed in the parameter regime of Fig. 7.
- ) Three types of initial conditions were used which all led to a
stationary restabilized scroll wave after a transient regime.
01 > 2 For the first one, the perturbation of the steady state was
fields were chosen in the fornmu(x,y,z)=u,p(X,y)[1
1. ] + a cosk,2) [u(xY,2)=vp(XY)[1+asink,2)] with the mag-
XS andv,p correspond to a steady spiral wave that is stable in
-0 04 08 12 1 2D in this regime. This perturbation transforms the straight
(c) k, (d) k, unperturbed instantaneous filament into a “helix” of small
elliptical cross section and pitch7Zk,. When the wave-
function of the wave number fob=0.01, €=0.025. (a).(b) a  observed to grow and to reach a helical restabilized state of
=0.5; (c),(d) a=0.52. In both cases, the real part decreases on thBeriodicity K, .
smatlll valufetsh ot;\ZN. Irll) th%azo.E;lz caset,hhybritdiz""ctjion tOf Tf‘it?igﬁ_”‘h served with an initial perturbation of the straight scroll wave
vectors of the two bands exchange these trends at slightly higher, v orm u(x,y,z)=u_ZD(>_<,y)[1+a.coskzz)],v(x,y,z)_
whereas the real part of the translation band decreases. In the pha_é)ZD(X’y)[1+aCOS((ZZ)]' This gives the instantaneous fila-
diagram of Fig. 1, the points where the linear spectrum is similar to d - _ The zi
one of these casesvith both the meander and translation bands €,X(2) =x,C0Skz2), y(2) =y, cosk.2). The zig-zag pertur-
helical restabilized state of periodicilky, . This type of time
development is expected on general ground in system where
of Sec. Illl A renders the scroll wave unstable for these pa- Finally, competltlc_m between several _d'ﬁeref“ qn_s_table
modes(up to four differentk,) was examined with initial
rameters
1 52 — (52 H
bands are of opposite sign in Figs. 5 and 7 may lead one to ZIO) /LC)]gI(X’y’Z)H ’f%()(;’}l/)[l”;fexg( EZ on) /%C)] (tyfplcal
think that the finitek, behavior of the meander bands is also Va'ues ar (2,8)[,=0.01 and_; about a few tens of space
However, a quantitative computation shows no simple relait('arggblzt"\;ave:qg:h g?énz?tltﬂ: tvr\'::stgﬁtbrgx.geégh;g?os i‘;—
tion between the meander bands curvaturk,at0 and the : qualrtative 1evel, : gime w u
spiral drift coefficient as reported in Table I. Moreover, even.”. . ! | : =
at the qualitative level, there is no general validity to theInltlal perturbed filament: When it was plan@ases= a) a
bands curvature d,=0, as shown by the data of Fig. 4. dirher;I it was nonplanagB+# « then an helical flament grew
It is of some interest to see how the spectrum of Fig. 5 is ectly.
2D meander unstable region. This happens through hybri _|I|;ed Instantaneous f|Iam(_ant Is closely apprquated bY a
elix of circular cross section, as shown in Fig. 9, and its

T "
# *, strongly depend on the top and bottom boundary conditions.
,,
i :2’ W arie9. We used either periodic boundary conditions that per-
they are clearly more relevant in an experimental context.
K Periodic boundary conditionsDirect numerical simula-
chosen to contain the unstable wavelengtts,. The initial
nitude a of the 3D perturbation being of order 19 (u,p
0 0.4 0.8
FIG. 8. Real and imaginary part of the growth raték,) as a  lengthk, corresponded to an unstable mode, this helix was
meander band and increases on the translation band kwitor A slightly more complicated time development was ob-
values ofk,, i.e., the real part of the meander band increases
ment[x:(2),y¢(z)] a planar “zig-zag” shape of small ampli-
unstable at smak,) are represented by circlej. bation was first observed to grow before turning into an
in Fig. 8 (note, however, that the translation band instabilityIeft and right progressive wave compésee, e.g., Ref24)).
The fact that the curvature of the translation and meandeﬁzOndltlons such as u(x,y,z) =Uzp(x.y)[ 1+ aexp(-(z
related to 2D spiral drif(as indeed proposed in RéfL5]). steps. In that case, it was generally observed that the most
to mainly depend of the planar or nonplanar character of the
opposite sign rule between the translation and meand g-zag filament first grew before taking an helical shape.
transformed into the spectrum of Fig. 7 as one traverses t%g Close to the instability threshold, the shape of the resta-
ization between the translation and meander bands as illus-

motion can be portrayed in a way similar to the epicycle
description of meander. The axis of the instantaneous fila-
ment helix rotates around a fixed vertical axis at the fre-
quency of the steady two-dimensional spiral. In the rotating
We performed direct numerical simulations to examineframe where these two axes are fixed, the helical instanta-
the nonlinear development of the meander bands instabilitpeous filament itself rotates with a frequency close to the
atk,# 0 and to characterize the restabilized nonlinear statesmaginary part of the meander linear eigenmdde., the
For boxes of medium size in thedirection as used in our difference between these two frequencies is of orderi0

trated in Fig. 8.

2. Restabilized bifurcated states
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FIG. 10. (a) Square of the amplitude of the meandering restabi-
lized state as a function of the parameteThe parameters used are
b=0.01 ande=0.025. The simulation box is (128128)x 130,
with dx= 0.2 and periodic boundary conditions are ug@j.Com-
parison of the square of the amplitude of the meandering restabi-
lized stateR? multiplied by 0.035 and the growth rate of the mean-
dering mode Reaf). Same parameter regime as@ anda is fixed
to 0.68.

We performed two different systematic studies in order to

FIG. 9. (a) View of the restabilized state in the weakly nonlinear better qharactenze the nature.of the 3D njeandgr bifurcation.
regime. The parameters age=0.684,b=0.01, ande=0.025, the [N the first one, we kept _the size 01_‘ the simulation box con-
size of the simulation box is (128128)x 130 with dx=0.2 and  Stant and varied the excitability usirag In the second one,
periodic boundary conditions are used. The dashed lines are th¥e kepta constant and varied the size of the simulation box,
trajectories of the tip of the spiral in four regularly spaced horizon-that is, the wave number of the initial perturbation.
tal planes. The bold line is the instantaneous helical filament. The At the linear level, the results of these direct numerical
dash-dotted line is the axis around which the axis of the helicasimulations are in close agreement with the predictions of the
filament rotates(b) Black bold circles, projections of the instanta- linear stability analysis, both for the instability thresheig
neous filament on an horizontal plane at different times. The boldwith an accuracy of order I(?) and for the unstable wave-
radius in each circle shows the instantaneous filament point atumber rangé¢k_(a) k., (a)].
heightz=0. This point trajectory is also shown for several periods  The radius of the instantaneous filament helix can be
of rotation (bOld dashed-dotted line: evolution between circles 1taken as a measure of the 3D meander |nstabll|ty amplltude
and 7; thin gray line: evolution for some time afterwardghe  As shown in Fig. 10, it is found to behave as the square root
pulsation of the axis of the filament is equal & =1.744, the of the distance to the thresholfkither |a_ac| or |kz
pulsation of the meander in the rotating frame is equalie= —k.(a)|]. Therefore, as reported previoudlys], the 3D

—2.159. These values are to be compared with results of the line . L . : . .
stability analysisi, - 1.766 andw,— *2.194.(c) View of the re- Fheander bifurcation is a supercritical Hopf bifurcation, as in

stabilized state with the same parameters and same simulation boX

using no flux boundary conditions. The instantaneous filament hasg . f hreshold. In Fig. 10 th
zig-zag shape and the amplitude of meander variesavii) Black ecomes important away from threshold. In Fig. , the

bold lines, projections in a horizontal plane of the instantaneou$duare of the meander amplitud® is compared to the

filament at different times. The trajectory of the spiral tip in a plane9roWth rate of the unstable meander mode in the whole band

where the amplitude of meander is maximal is also shown for seviK-(8),k+(a)]. A clear asymmetry of th&’? curve is al-

eral periods of rotatiottbold dashed-dotted line: evolution between ready seen, with a slope at tle (a) end about 3.4 times

filaments 1 and 7; thin gray line: evolution for some time after- larger than thek (a)-end slope.

wards. Its pulsation is equal te, =1.745 whereas the pulsation of No flux boundary conditiong:or the box heighH used in

the instantaneous filament in the rotating frame is equabje our simulation(about two or three unstable wavelengttibe

—2.159. The mean distance between the instantaneous filamebbundary conditions chosen on the top and bottom boundary

points and the centreldash-dottefl axis is R=0.4930 in the(a)  conditions have a strong influence on the restabilized state.

(periodic boundary conditiorfigure andR=0.4944 in the(c) no-  For no-flux boundary conditions, the spiral wave in each

flux case. The core radius of the corresponding 2D spiral ishorizontal x-y plane has a meandering motion. However,

Ro=0.4833. contrary to the case of periodic boundary conditions the me-
ander amplitude depends arand is well approximated by

a strong meander regime and of order 1Gn a weak me- |cosk,2)| (see Fig. 9. This implies in particular that in some

ander regimg Thus, for periodic boundary conditions the horizontal planes the meander amplitude is zero and that the

meander amplitude is found to be independent of hejght corresponding spiral tip performs a simple steady rotation. In

while the phase of the epicycle motion varies linearly with the rotating frame where these special tips are motionless,

However, thek, dependence of the nonlinear term quickly
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the instantaneous filament takes a planar zig-zag shape thiarentx-y planes. Our simulations show that, as for 2D me-
rotates around its vertical midline at a pulsation close to thender, these ellipses are in fact almost circtilar.
imaginary part of the unstable meander eigenmode corre- Finally, we briefly discuss the transition between the re-
sponding to the wavelength of the filament. Thus, for no-fluxstabilized meander regime seen on the “small core” side of
boundary condition, the meander amplitude varies sinusoithe phase diagrartFig. 1) and the negative line tension dy-
dally with height while the phase of the epicycle motion is namics that belongs to its meander “large core” side. Since
independent of height. scroll waves do meander in this transition region, the evolu-
This shape and motion are simply understood in a weaklyion of scroll waves as seen in direct numerical simulations is
nonlinear description where the restabilized state can be amwot directly linked to the linear spectrum of the steady scroll
proximated as a sum of the unperturbed solution and the fouvave. For example, when the meander and translation bands
unstable meander eigenmodes,(k,) anda}(k,) at =k,],  are strongly hybridized, the translation bands are only un-
stable for small values ok, (Fig. 8. Nonetheless, direct
) simulations show that the meandering scroll is unstable and
u=uo(r,¥) +[Auy(r,)exdi(kz+ wyt) |+ Buy(r, ) that its core grows as in the negative line tension regime in
i simulation boxes small enough to only contain unstable
expi(—kzt o]t @49 modes of the meander bands with larger valuek,of This
happens on the whole smalkide of the dashed;= w, line

v=0o(r, ) +[Av,(r, ) exi(K,z+ w,t) ]+ Bu(r,¥) of Fig. 1. This line stands very close to the line where the
external field drift of meandering spiral changes s|g5]
Xexgi(—k,z+ wst)]+c.cl, (25 and it is difficult to distinguish the two in our simulations.
So, the link between the spiral drift sign and the “negative
with u;,v; the eigenmode of eigenvalue(k,) and w, line tension” type of instability development continues to

=Im[ on(k,)] the meander frequency. The no-flux boundaryhold for meandering scroll wave.
condition , J,u=0, atz=0 andz=H=2mw/k, enforcesA

=B (i.e., for the height considered, the no-flux boundary

conditions stabilize the state with symmetric upward and IV. INFLUENCE OF TWIST
downward propagating deformation that was observed to be
unstable with periodic boundary conditionghe instanta-
neous filament corresponding to the fiel@§) is easily de-

termined by r_eT”e”_‘be””g that it is the I_ocmxr—,uﬁp, everyday experiengehat straight rods and ribbons can be
v=0gp. Its position is conveniently parametrized ¥§(z)  gestapilized by twisting them beyond a certain level. A
=Xo+ X' (z,1), Yiip(2) =Yo+ 8y’ (z,1) using Cartesian coor-  gomewhat similar instability was reported in RELO] in
dinates in the rotating frame where the unperturbed filamen§ merical simulations of excitable filaments. Beyond a
is standing atXy,yo). For small|A[, one obtains threshold twist, the rotation center line of an initially straight
twisted filament was observed to adopt a helical configura-
tion. Observations of a similar “sproing{10] instability
have since been made in the related context of the complex
Ginzburg-Landau equation vortex ling&7]. The character-
istics of the excitable filament sproing instability have, how-

/ / it _ ever, remained somewhat unclear. In the dynamical simula-
Ox1000X" +dyvody” + coskyz) 2Av,e e+ e 0] O('27) tions of Ref.[10], a single filament turn was imposed in a
simulation box with periodic conditions, and the box height
was varied. A complicating feature of this procedure is that
both twist and the available wavelength range are changed at
the same time. On the theoretical side, the instability fails to

As noted in several previous studigg8,10, twist is an
important degree of freedom brought by the extension to 3D.
It is well known from classic studies of elasticif26] (and

dxrUpdX’ + dyrUigdy’ +cogk,z)[ 2Au;e'“?' +c.c]=0,
(26)

where the fieldu,,v,uq,vq and their derivatives are evalu-
ated at the unperturbed filament positiof} (yg). Inversion
of Egs.(26) and(27) gives

5X’=Cos(kzz)[aAei‘°2t+C.c.], 3An e>_<p|anation can be provided by the proxi_mity of _tlag
= w4 point on the meander threshold lit@s noted in a particular
limit in Ref. [14]). The argument is thdt) the meander modes are
5y’=cos{kzz)[BAe“”2‘+c.c.], (28) clqse to the translation ques whes is glose t.o(ul, (i) the
ellipse should reduce to a circle for translations since the translated
circular core is circular. This can be explicitly seen from E2f).
wherea anq,B are complex constants that .dependl,qmv_1 Namely, Eq. (28) gives 8x'+idy’ =cosk2[Ala-+iB)expioat)
and the derivatives af, evaluated at the poinkg,yo). This | ax(a* +ig*)exp(~iwst)]. The explicit inversion of Eqs(26) and
clearly shows the planar zig-zag shape of the instantaneoys?) shows thatx+i g3 is proportional to ¢,u;—u,w,) and, there-
filament since points in differen¢y planes simply differ by  fore, vanishes whenug,v,) tends toward the translation eigen-
the real scale factor cdgf). As time evolves, Eq(28) also  mode (,,v,). In this limit, only the term proportional tax*
shows that the filament points follow scaled ellipses in dif-+ig* remains andx’ +idy’ follows a circle.
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FIG. 11. Frequencyw, of the scroll wave as a function of the
twist for a=0.8, b=0.01, ande= 0.025. The smalk,, behavior of -
the pulsation can be well approximated by (7,)=w.(7,=0) 1
+O.720£'r§, for low values ofr,,. For higher values of,,, a linear =
behavior of w; as a function ofr,, is observed. The first-order
perturbation result coefficieiR9) is 0.7203 using the numerically
determined rotation eigenmodes Hfand of its adjoint.

-0.2- ,
be captured by small twist approaché$,12 since[12] the (© !
motion of the rotation center is not influenced by twist in this
limit (see Appendix R FIG. 12. _Real parts of the rotation bafttin solid I_ine and the
The present approach permits to relieve some of thes@_"o translation band&old dashed and dash dotted lipes a func-
problems since the twist, can be varied from zero to large tion of the wave numbek, for th_e same parameter_ values
values and a whole range of wavelengths can be examined {n%-8 P=0-01, ande=0.025 and different values of wista)
the linear stability computationsk{ is simply a parameter go'd(bL Tw=02, (C) ?:%35' a.nﬁ(d) TW_O'45'hThe tr:nslatlog
that can be given any chosen value independently, ®f ands have maxima &= = ,, with a zero growth rate. A second-
We restrict ourselves here mostly to parameter values foj:;Iry maximum appears on the tran5|at.'on. bands as the twist in-
. . . . . . reases. At a threshold value of the twist it becomes unstable at a
which a straight untwisted filament is stable, that is, on th%onzero value ok
largea side of the(3D) meander instability region. Figure 11 Z'
shows the frequency and tip radius for a family of twisted ) .
scroll wave obtained by increasing, from 0 to 7, at one (—k,). One can note also that the translation mode_s with
such parameter poina& 0.8p=0.01¢=0.025). Re o(k,)]=0 stand ak,= =7, and no longer ak,=0, in
The frequencyw,(,) increases quadratically at small agreemeljt vynh the analync expression given in Sec. Il C .
twist and almost linearly for larger twist values. The qua-'When twist is further increased tq,~0.33 (not shown a
dratic behavior at smalt,, is simply obtained by applying S€cond maximum of Re(k,)] appears neak,=0. The

first-order perturbation theory to Eq¢S) and (6), which value of R¢o(k,)] is negative at first at this secondary
gives maximum. However, it increases witky, and it is slightly

positive atr,=0.35[Fig. 11(c)]. The twisted scroll waves
are then unstable for a finite range of wave vectors kear

0.5

01(Ty) = 01(Ty=0)— 72 —= <u¢’a¢ﬁu°> +0(7%).  =0. Increasing twist further, enlarges the range of unstable
(Uy,dgUo)+ (v 4,9 400) wavelengths and the instability growth rate, as shown in Fig.
(29 11(d).

Dynamical simulations reported in Sec. IV B show that

The direct computation of the matrix element ratio on the rhshis twist-induced instability of the translation bands corre-
of Eqg. (29 is in good agreement with a direct fit of the spond to the “sproing” instability of Ref[10]. Before de-
w1(7,) curve of Fig. 11(see caption Analytic descriptions  scribing these results, it is worth explaining why the insta-
of the wy(7,) curve for larger twist values have recently bility does not appear around the translation modek,at
been obtained in the free boundary limé-(:0) both for  + 7, but a finite wave vector away from them. This is a
small core[28] and large core scroll waveg9]. direct consequence of 3D rotational invariance: a twisted

The determination of a family of increasingly twisted scroll wave the axis of which is tilted has the same frequency
steady scroll waves permits one to determine the evolution odis the one the axis of which is vertical. So, a small tilt per-
the stability spectrum with,, . The results of such a compu- turbation should not change the translation mode eigenvalues
tation are shown in Fig. 12 for scroll waves of Fig. 11. As +ijw, to linear order. Therefore, they remain local extrema
twist increases, the deformations of the translation bands arsn the translation bands, as it is observed in Fig. 12. A direct
particularly important. As expected from general argumentsnathematical proofbased on the same reasoniigoffered
(Sec. Il B 2, for 7,=0.2[Fig. 11(b)], the translation bands in the next section.
011,01 are no longer even and related by complex conju- Finally, we find it interesting to show in Fig. 13 the twist
gation. It only remains the lower symmeteyy(k,)=0¢, influence on the spectrum in the “negative line tension” pa-
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FIG. 13. Real parts of the rotation baftthin line) and the two
translation band$dashed and dashed-dottess a function of the
wave numbek, for a=0.44, b=0.01, ande=0.025 and different
values of twist:(a) r,=0, (b) ,=0.1, (¢c) 7,=0.14, and(d) 7,
=0.19. The translation bands have a minimum zero growth rate for
k,=*7,. The maximum growth rate of the translation bands is

increased by twist. The meander modes also become less stable . . . . .
twist is increased. The change in the most unstable band-for I?auatlon(34) is a consequence of 3D rotational invariance

close to 0.14 appears to be due to hybridization between the tran&> W€ proceed to Sh.OW' The perturbation Corre§p0nd|ng to
lation and meander bands like the one observed in Fig. 8. Th _cllnlng the scroll axis (_:an be found by e)_(preS_SIr!g the in-
results of direct numerical simulations show that twist does notCIIned scroll in the vertlc_al scroll re_ferentlal, similarly to
qualitatively modify the development of the zero twist instability in what was done to determine translation moges. (11) and

this regime: a “negative line tension” growth of the filament is (12)]. )
observed. One obtains

Thus, the translation modes remain extrema on the trans-
lation bands, if

(U, (1+idy)u)=0. (34)

(1)

rameter regime of Fig. 5, although the untwisted scroll wave ( '”C) —exfi(wt+ rwz)]< u'”c)
is already unstable in this case. Twist modifies the spectrum U|(r::-(): i
in a way that is rather different from that seen in Fig. 12. It

mainly amplifies the instability of the largk, part of the =exfi(wit+7,2)]
spectrum.

Inc

_ i
zexp(|¢)(a,+ra¢)

. 0
+
A. Helical destabilization and 3D rotational invariance Tl XM d))&(,,} ( Uo) 39

In order to demonstrate that the translation modes eigen- . .
values at,= * 7, remain extrema on the translation bands,and the complex conjugate mode. One can directly check

we show that thatu(t) v (1) obey the linearized time dependent equations.
Namely,
do
al, ..~ (30 (3 27— S2)URL= (w104 Tyt Vio)UR)

z —w

+[3,f(ug,vo)uf)

We proceed in two steps. First, perturbation theory is used to +3,f(ug,uo)v{/e, (36)
compute the eigenvalues of modes close to the translation

modes on the translation bands. For definiteness, we consider 5,0 ()= w;d 40+ d,9(Ug,v o) U2+ 9,9(Ug,v0)v {2

modes atk,=—7,+ 6k, close to the translation mode Inc('37)
(uy,vy) atk,=— 7, with o=iw;. Equations7) and(8) can
be written without approximation, Equation(37) shows that {;,.,vinc) [EQ- (35)] obey
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0.8

inc =127y (1+i
u ):( i (+|a¢)ut. 39

0

[ckzﬂw—iwﬂ(

inc 0.6
The inhomogeneous rhs of E@8) comes from the fact that
the g, derivative terms in Eq(37) act both on the exponen-
tial prefactor and on the intrinsiz dependence afi;,. [EQ.
(35], while in effect only their action on the exponential
term is taken into account in E¢B8) (through thek, depen-
dence ofﬁkz).

Equation(38) directly gives the sought orthogonality re-
lation (34) after multiplying both of its sides by the left ei-

genvector Gy, U;) of £, — . with eigenvalue w; and tak-
ing the scalar product.

B. The sproing bifurcation

In order to study the nonlinear development of the twist-
induced instability shown in the parameter regime of Figs.
12(c) and 12d), we performed direct numerical simulations

of twisted scroll waves by using periodic boundary Condl-neous filament, the dotted line the mean filament, and the thin solid

t|0r_1rs at liheijtopfa_n_(:_ blotton;_f[)_f the S|mulat|o(rj1 bTth. imol tlines the quasicircular trajectories of the instantaneous filament in
WO KInds of initial conditions were used. 1he SIMPIest ;o planes of equally spaced Parameter values are

one.consisteq of two—d.imensio_nal spirals stacked. along thgol& b=0.01, ande=0.025, the simulation box is (128128)
vertical (z). axis. .The tWISt was m_trod.uced by rotating Fhem X 110 with dx=0.15, corresponding te,,=0.381.(b) Modulus of
around this vertical axis. The main disadvantage of this typgnhe Fourier transform of the spiral tip complex positionHiy) in a

of initial conditions was that they usually are far from a horizontal plane for the same parameter regime. The peak=at
stationary twisted scroll wave and from a restabilized wave-0.064 corresponds to the slow movement of the mean filament in
when it existed. As a result, reaching the asymptotic attractthe plane while the peak ai=1.884 corresponds to the rapid ro-
ing state could be very costly in computational time. In ordertating motion of the spiral. The Fourier transform was performed
to avoid this problem we mainly used initial conditions con- using 2048 points with a time spacing 6f=0.1969.(c) The thin
structed using results of previous direct simulations on a gridolid line is the trajectory of the spiral tip in a horizontal plane and
with the same values of the parameters and the same hothe bold dashed line is the trajectory of the mean filament in that
zontal size but of a different vertical extension, interpolatingplane. The mean filament rotates clockwise while the fast rotation

FIG. 14. (a) The bold solid line represents the helical instanta-

linearly the values of the andv field on the new grid. of the spiral tip is counterclockwise. At a given time, the projection
For definiteness, we describe the result for the paramete@ the mean filament and instantaneous filaments on the horizontal
of Fig. 12. plane are circles centered on the helices axis position marked by a

We first focus on the case when a single turn of twist isStar-
initially imposed as in Ref{10]. This case is special for the
following reasons. On one hand, the previous linear stabilityions. It closely corresponds to the value 0.350 obtained from
results(Fig. 12 show that all the potentially unstable modesthe linear stability analysis for the instability of the=0
correspond to| kz|<7-w- On the other hand, in a box of modes(the instability threshold twist dt,# 0 is 7=0.345).
height H, the only possiblek, values compatible with the The asymptotic scroll wave state is shown in Fig. 14 for
imposed top and bottom periodic boundary conditions arerw=0.381 and it is qualitatively similar for other valueg
multiple of 27/H. Therefore, for a single turn of twist,, >7.. The instantaneous filament takes a helical shape at
=27/H, there is a single potentially unstable mode in the€ach time. The axis of this instantaneous helical shape is
simulation box and it stands &=0. independent of time but its other characteristics vary with
A Series Of dynamica' Simu|ati0ns were performed |nt|me The pOint of the instantaneous filament in a giVen hori-
boxes of varying heightsl. The initial twist was correspond- Zontal plane(i.e., the spiral wave tip in that plahelosely
ingly varied fromr,,=0.3 to ,,=0.5. follows an epicycloidal mot|o_r(F|g. 14 and the instanta-
For low values of twist, the twisted initial state simply Neous filament global evolution can be accurately param-
evolves toward a straight twisted scroll wave. The instantaétrized as
neous filament has a helical shape that rotates at a fixed
time-independent frequency around its vertical axis. In each
horizontal plane, the wave is seen as a spiral steadily rotating
around the helix axis. y=RysiNwst+ 7z + @) +Rsiwmt+742). (39
Beyond a threshold twist., the twisted initial state
evolves toward a more complex state. The threshold twist iThe pulsatiorwg and the radiuk; are close to the pulsation
estimated to be.=0.352 from the direct numerical simula- and radius of the stationary straight twisted scroll. The pul-

x=R; cog wst+ 1,2+ ) + Rco wpt + 7,2,
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TABLE II. For different values of the imposed twis{,, values of the pulsation of the restabilized mean
filamentw,,, of the difference between the pulsation of the steady sardll,) and the imaginary part of
the unstable translation mode f&y=0, the pulsation of the steady scrail,(7,), the pulsation of the
restabilized spiral around the mean filament the local twistr of the restabilized state, and the calculated
corresponding pulsatiom,(7). One notes thaby is close tow(7).

Tw Wm w1(7y) —ImLay(k,=0)] 01(7y) Wg T 1(7)
0.50 0.053 0.049 1.973 1.91 0.353 1.892
0.45 0.061 0.059 1.943 1.88 0.347 1.889
0.40 0.066 0.066 1.916 1.88 0.347 1.889
0.355 0.063 0.063 1.891 1.88 0.349 1.890
sation w,, is found to be small compared @, (Table ). increases so as to maintain the local twisapproximately

The radiusR is zero at the bifurcation threshold. It increasesconstant, as shown in Fig. 5. The frequencyws appears
and becomes comparableRq as 7, increases past; (Fig.  to remain close to the frequency of twisted straight scroll
15). As Rw,, remains small compared #®;ws, the move- wave with this value of the local twist, as shown in Table II.
ment of the spiral tip in a horizontal plane can be described It is interesting to compare the above results with what
as a rapid rotation movement around a slowly movinghappens when the initial condition contaimgurns of twist
“mean” point (Fig. 14). The bifurcation can thus be de- since the modes with,=j2#/H, j=1,... n—1 obey both
scribed as in Ref{10] as a transition in the shape of thesek,<r, and the periodic boundary conditions. Analyzing
slowly moving points, the “mean filament,” from a straight moderate values of the imposed twigf=n2x/H requires
shape to an helix of radiuR (with the same axis as the us, of course, to extend the box heidhproportionally ton
instantaneous filament and restricts us to<5.

The amplitude of the sproing bifurcation can be measured The simplest interesting case occurs when a single un-
by the radiusR of the helical mean filametThe numerical ~ stable mode withk,#0 can develop in the simulation box.
simulations result§Fig. 15 show thaiR behaves a§7,— 7.  The linear stability results show that this can only happen
confirming the normal Hopf type of the bifurcation. The mo- close to the instability threshold when the instability growth
tion of a filament point in a horizontal plane is quasiperiodicrate is very low, otherwise thie,=0 mode is also unstable.
with two frequenciegsee Eq(39) and Fig. 14 w,, andws.  This is achieved, for instance, f@=0.8, b=0.01, ande
As reported in Table Il, the frequenay;, closely agrees with  =0.025, andn=5 initial turns of twist in a box of height
the differencew; —wx —o between the stationary twisted H=613xdx with dx=0.15. The single unstable modeg

scroll pulsation ) and the imaginary part of the unstable =2m/H=0.069 corresponds to a wavelength equal to the
mode ath:o’ as expected from a Hopf bifurcation in a bOX he|ghtH W|th th|S parameter Choice, adil’eCt Simulation
rotating frame. The other frequenay is equal to the twisted Shows that the instability develops. The asymptotic state is
scroll pulsationw; at the bifurcation point but departs from it Similar to the previously described one for a single unstable
as one moves away from it. mode atk,=0. The movement of the corresponding instan-
Some insight into the sproing bifurcation and the value oftaneous filament can be parametrized using polar coordinates
ws can be gained by computing the local twist of the restain €ach horizontal plane by
bilized scroll wave. The mean filament can be taken as the
central curve of a ribbon, one edge of which is the instanta- 037
neous filament. The local twist of this ribbon is equal to 1.5 &“p
[using Eqgs.(C2) and(C4) of Appendix G

0.36

2
T

27—Wr Tw 40)
= - ,
L 1+(R7,)? 05 035
wherelL is the mean filament length ang,=2#/H is the p) 0.3
twist imposed on the initial straight scroll wave. Equation -34 . 042 0.5 ) 34 039, 044 049
(40) shows that sproing decreases the twist. Moreover, whefl v w
the initial twist is increased the average helix radruglso FIG. 15. (@) (O) Radius(R) of the helical mean filament as a

function of the twistr,, for a stationary straight twisted scroll
wave and linear interpolation & for small values ofr,,— 7. (thin
R can be easily computed &= (Ryaxt Rmin)/2, WhereRax continuous ling where the computed threshold twist4g=0.352.
(Rmin) is the maximum(minimum) distance of the instantaneous The parameters a®@= 0.8, b=0.01, ande=0.025.(b) Local twist
filament from its axis in a horizontal plan&;, should be consid-  of the restabilized filament as a function f. The dashed line is
ered to have a negative value if the spiral tip trajectory enlaces ththe line of equationr= 7, the continuous line is the line of equa-
axis of the helices during one rotation peniod tion 7=1,,.
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The asymptotic state reached in such a case after the insta-
bility development, starting from an initially twisted straight
scroll wave is shown in Fig. 16. It is significantly more com-
plicated than in the single unstable mode case and the instan-
taneous filament shape is rather different from a simple helix.

In each horizontal plane, the spiral tip rotates uniformly
around a slowly moving point. The positions of these slowly
moving points can be numerically computeahd used to
construct the position of a mean filament. The motion of the
mean filament is found to be well parametrized in each hori-
zontal plane by

(a)

[

x+iy= > Rexdi(kVz+oit+¢)], (42
j=1...n

-0.03 ) - :
wherez denotes the vertical position of the plane &3d are

the wave numbers of the modes that have developed in the
! -0.06 simulation box. All the observel!’ have the same sign as
7w - As seen from Eq42), the corresponding modes have an
amplitude R; which is constant in time and a phasgt

Ll
0 03 0.6 0.9
k

0 -0.09 , 1Sla :
0 kz|°-3 0.6 + ¢; that evolves linearly in time. Moreover, the pulsations
(©) : (d) w; are linearly related to thil"), w;=w+k{c, as shown in
Fig. 16. Thus, the mean filament parametrization can be re-

FIG. 16. a=0.8, b=0.1, e=0.025, the simulation box size is
(128%x128)x 349), the space stepds=0.2, and five turns of twist
are imposed, which corresponds tQ=0.450(a) The bold solid 0
line represents the restabilized mean filament. The instantaneousx+iy=e'“'F(z—ct) with F(z)= >, R]-ei(kzJ 2,
filament and the quasicircular trajectories of instantaneous filaments j=1...n
in horizontal planes are not showfin) The dashed and solid bold (43)

lines represent a top view of the instantaneous filament at two given . . . .
times. The three thin solid lines are typical trajectories of the spiral This explicitly shows that the mean filament deformation

tip in horizontal planes. The motion of the spiral tip in each plane isProPagates as a nonlinear wave of constant shape in the ver-
the composition of a fast counterclockwise and a slow clockwisdical direction. It was indeed directly checked that the mean
rotations.(c) Modulus of the space Fourier transform of the com- filament shape did not noticeably change at long times in our
plex mean filament positiow(z)+iy(z). The amplitude of each Simulation(i.e., for time intervals as long ast=2000). A
mode is constant in time while its phase grows linearly in time withdirect computation of the twist shows that it is almost uni-

a constant pulsatiom(k,) shown in(d). For the Fourier modes form and that its mean value is significantly lower than the
with an amplitude significantly different from zere(k,) is alinear ~ one obtained when onlig,=0 mode can grow. In the case

written as

function ofk,. depicted in Fig. 16, the mean local twist of the restabilized
state is 0.327 whereas in the restabilized state when only the
x+iy=R;exfdi(wt+7,2)] k,=0 mode can be destabilized, the mean local twist is equal
] to 0.347.
tRoexfi(wot+(rw—kp)z+4)], (41 The stability of the simple restabilized helices was tested

) in the parameter regime if the more complex state of Fig. 16
where R,=0.31 andw,=1.85 are close to the radius and existed. To this end, a simulation was first performed with a
pulsation of the straight twisted scroll and whe®e=0.1  gingle turn of twist in a box height chosen such that the
and w,=—0.047 are small compared ®; and w;. The jnitial twist was equal tor,,=0.45. It produced, as already
wave numbek,,=0.069 is equal to the single unstable wave gescribed, a restabilized helix similar to the one shown in
number that can develop in the simulation box. The compurig, 14. Five copies of this restabilized helix were then ver-
tation of w, shows that it is close of the differenee(7,,) tically stacked. The resulting five-turn helix was used as the
—Im[o(kz,)]. In contrast to the case of the single turn of jjtial condition for a simulation analogous to the one shown

twist, the instantaneous filament shape is slightly differen{n Fig. 16. It was observed to evolve toward a complex state
from a helix since its radius varies along the vertical axis.

The motion can nonetheless be interpreted in the same map———

ner by cons_idering that the sc_:roll rotates ur_1iform|y ar_ound & 5This can be done by considering the mean filament as the mean

slowly moving helical mean filament of radil& and pitch  position of the instantaneous filament over a rotation period, or by

27l (Tw—Kz)- considering it as the instantaneous center of rotation of the instan-
The case where several unstable modes of the translatiaaneous filament in a plane or by removing the high-frequency peak

band can develop in the simulation box, can only be studieth the Fourier spectrum of the instantaneous filament motion. These

in a box where several turns of twist are initially imposed.three methods give very similar results.
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identical to the one shown in Fig. 16. This clearly shows thaB8D visualization[9,34] appear to render possible detailed
the simple helices are unstable and strongly suggest that tlexperimental characterization of scroll wave instabilities and
complex state of Fig. 16 is the unique attractor in this parameynamics. We hope that the present results will also be seen
eter regime. We repeated this computation with an initialas a further motivation to undertaking this challenging task.
twist of 0.357 and again a similar complex state was pro-

duced.
Systematically varying the initial twist would permit us to APPENDIX A: NUMERICAL METHODS
see whether these complex states directly appear at the insta- 1. Determination of the steady state

bility threshold or arise from a secondary bifurcation of

stable simple helical states. More generally, further studyinz Dtitermln:ng the _statlonlary scr%III \(Nﬁ?v?rs iﬁnS'Stsd"thOIV'
the filament shapes in longer boxes with more unstabl N9 the noniinear eigenvaiie probiett). 10 this end, the

modes would be quite instructive. Both tasks require moréduations are first discretized on a polar grid of shie

computer time and power than presently available to us an@ N, . This provides a set of NIX Nf!’) quations[the val-
shouFI)d be left for otﬁer studies.p y ues of the rhs of6) on the grid points with 2(N, XN )

+ 1 unknowngthe values of the field,, vy on the points of
the grid and the pulsatiow). This indetermination comes
V. CONCLUSION from the rotational invariance of the problem and can be
) ) taken care of by setting the value @f(N, ,N,) to 0.5. One
We have searched to gain and present a general view Qfi,s has to find the zeros of B(x N,) nonlinear equations
scroll wave linear instabilities and of their nonlinear devel- ¢ 2(N,xN,) variables
. . . : roNg :
opments for a simple model of an isotropic excitable me- his can be done accurately by using Newton’s method.
dium. Different types of instabilities have been shown t0re |inear operator involved in Newton’s method is inverted

arise depending upon the band of modes to which they bejging an iterative techniquéiconjugate gradienft3s]) and
long. These different instabilities have been found to develogy,, starting point is either the result of a direct numerical

along different ways and to give rise to distinctly different gjjation interpolated on the polar grid or the result of a
restabilized states that we have endeavored to characterizeprevious computation with slightly different parameters. We
The negative line tension type of instability has beengyng that Newton’s method always converged and that the
found to occur in the weakly excitable part of the phase;onyergence was exponential and allowed us to reach accu-
diagram and to be strictly linked to 2D spiral drift in an 4cies of the order of 10 in L, nornf in a few stepgabout
external field. In this respect, it seems worth trying and bettefo, \vhich take about an hour using a DEC alpha PWS 500
analyzing the mechanisms of spiral drift change. The meanyq «station for a grid of 88160 points whereas direct

dering instability is present in 3D in a parameter region,,merical simulations allowed only an accuracy of order
larger than that in 2D. On the “small core” side of the phaseumty in L, norm

diagram, scroll wave meander in a regime where spirals are
steadily rotating, as previously notefl5]. The long-

wavelength deformation of the meander band is, however,
not directly related to spiral drift. The introduction of twist ~ The eigenvectors otkZ are denoted by;,e,, ... and

has been found to induce a deformation of the translatiomdexed according to the real part of the corresponding ei-
bands. Above a threshold twist, this gives rise to the sproingenvaluesr;=o,=- - -. In order to accurately compute the

|nStab|l|ty that takes place a finite wave vector away from th%igenva]ues of oﬁkz of the |argest real parts, we have used

translation mode. This has been shown to be a general ol iterative method proposed and analyzed in R&d]. It is

. . . . : %riefly described in this appendix and some details of our
sproing bifurcation is not captured by small twist ap- implementation are provided

proaches. The bifurcated state arising from the growth of a The idea of the algorithm is to diagonalize a projection of

single unstablg mode has peen found to take a simple hellc%k in a subspacéapproximately spanned by the eigenvec-
shape as previously describgtd]. However, a more com- z di . berof ei
plex filament deformation has been observed to result frontPrS€1, . - . .8, COrresponding to a given numboerot eigen-

the growth of several unstable modes. Simulations in largef@/Ues of the largest real parts. ,
boxes appear to be needed to better analyze these states. 1 N€ @lgorithm proceeds in three main steps.

The present study appears worth extending along several 1he first step consists in creating an appropriate vecfor
other lines. It certainly is important to investigate how thefOr generating the diagonalization subspace. A suitable
present results extend to more realistic models of excitablEN0ICe IS 10 takex; =exp(Ly 1)X, for a generic vectox,.
media, specially in the context of cardiac physiology. It will This suppresses the componentspbn the eigenvectors on
also be quite interesting to see how rotating anisot{@d~  high index(note that these eigenvectors correspond to eigen-
33] or spatially varying properties induce the different insta-values of large modulysThe final consequence is that trun-
bilities or interact with them. Deeper insights into the behav-cation at levelm produces an error of order gx{Re(o .1
ior of these complex waves in various situations may be—o;)] on the representation of thigh eigenvector(for i
gained by developing and analyzing reduced models, repro-
ducing the basic phenomenology uncovered here. We hopeto
be able to report progress in this direction soon. Advances in®we define|\u,u||2=2(uﬁj+uﬁj).

2. Computation of the linear stability spectrum
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<m) [20]. In practice, multiplication by the exponential is Using m=50, the ten most unstable eigenmodes and
approximately achieved by computing by iterations= (1 eigenvalues are obtained with a good accuracy:
+dtL, )"0/, for an arbitrary vectox,, a sufficiently large  [[(o— £y ) (uy,v1)|,<10"°.

integert,/dt, and a sufficiently smallit to prevent the time

stepping scheme from being unstaptlieis means thadt is 3. Direct numerical simulations

lower than 1/maxf[), heredt=10"5].

The second step consists in generating an appropriate su
spacekE for diagonalization. This is taken to be the sp&ce
spanned bY{G(Ly)]"%;, n=0,... m—1, whereG is a
polynomial, the choice of which is discussed below. Explic-

p. Direct numerical simulations of three-dimensional excit-
able media were performed using a forward Euler explicit
time-stepping scheme . The diffusion operator was evaluated
using finite differences and a 19-point formdJizs],

itly, the computation of an orthonormal baseand of the 6dX25Ui,j,k= —24U; j kF2(Ui s 1jkHUi—gj kUi 41k
matrix A=a; ; of the projection of G(£) ], on E proceeds
recursively as follows. Lex,, ... x, be then first element FU ot Ut U e 2) T Uik
f th E an Xn=Y,. Then, at the next st
of the base of and G(Ly,)Xn=Yn en, at Ine next step FUirgj—1ktUisajkratUivrjk-1
we compute
tU_gjraktUi—gj—1x T Ui—1jk+1
yn—HE . (Yn X)X tU—gjk-1FTUj+1k+1tUijr1x-1
(AL) FU okt Ui o1t (A4)

Xn+1™=

Yn— 2 (Yn X)X
Lo 2 This method has two main advantages compared with the
classical seven-point formula. First, its stability limit allows
The construction ends at stap. This building of an or- greater time steps and therefore the computing time in spite
thonormalized base df presents the advantage of decreas-of the additional operations involved in the Laplacian evalu-
ing the contribution of the first eigenmodes in the elementsation is found to be 1.3 times smaller. Second, the error made
of higher order of the base. Otherwise, this contributionwhen evaluating the diffusion operator is isotropic at the
would be dominant and would result in a lower accuracy indominant order(order dx?), whereas with the seven-point
the computation. In our case, the scalar product is defined biprmula it depends on the grid orientation.
a discretized version of the standard scalar prodiLt No-flux boundary conditions-Vu=0 are imposed on
the vertical sides of the box and either no-flux or periodic
(Xi,yj):iz IE Xi(ir i)y, (irig)i drdedr.  (A2) Egﬂggg:iyesc.:ondltlons are chosen on the top and bottom
Y The position of the instantaneous filament in the horizon-
tal planes is computed as the intersection ef=a0.5 and a

The third step consists in the diagonalization of an approv —0.75 (0.51—b) isosurfaces.

priate truncation ofG([,kZ). SinceE is not invariant under
the application ofG(LZkZ), the orthogonal projectiots,,, of

. . . APPENDIX B: SPIRAL DRIFT IN AN EXTERNAL FIELD
G(Ekz) onto E is considered. Its matrix elements are
In the presence of a small external fiddg the spiral ro-
_ oo tation center drifts at a constant velocity proportional to the
i=0X,Yi),, 1,...mx{1,... m}. (A3 ) ) . ; .
9= 06y (L ed P b (A3) field magnitude but at an angle with the field direct[@7—
39] as given by Eq(18) of the main text. The drift coeffi-

The obtained matrix is diagonalized and both its elgenvec&iemSaH anda, have been computed in the free boundary

tors and its eige_nvalu_es are computed. It is checkeq at thﬁamit (e<1) both for small cord23] and large core spirals
end that the leading eigenvectors@f, are good approxima- [14]. We derive here a general formulg. (B10) below] for

tions of the leading eigenvectors 4f . _ the drift coefficienta=a+ia, as a matrix element be-

The choice _of the polynomigb is of some Importance. tyeen the translation eigenvectar, (v,) of £ and the cor-
Indeed, the simplest and computationally most eff'c'emresponding right eigenvectoti(,3,) of £
Ui .

choice would be to tak&(X)=X. This would result in the - :
amplification of the contribution of the eigenmodes(gf of With an added external fielfl, Egs. (1) and (2) read

large index [i.e., corresponding to eigenvalues of large alu=V2u+f(u,v)/e—E-€u, (B1)
modulug and,LkZ being ill-conditioned, would prevent the
success of the method. We have u§{K) = (1+dtX)t/d, dw=g(u,v). (B2)

with t; chosen large enough to maﬂa(ﬁkz) differ signifi-

cantly from the identity(a typical value wag,=0.5). De- \We choose a coordinate system with thexis along the field
spite the increase in computational cost, this choice signifidirection and corresponding polar coordinate®. We ana-
Canﬂy increases the accuracy of the method by decreasir'gze the motion of a counterclockwise rotating Spiral that is
the contribution of the eigenmodes of negative eigenvaluesstationary, forE=0, in the rotating referentialr(¢) with
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TABLE lll. For b=0.01, €=0.025 and several values afthe  Equivalently, this gives the sought formula for the drift co-
drift coefficients given by Eq(B10) computed using the eigen- efficients,
modes ofﬁkZ and of its adjoint and the drift coefficientg —i «,

measured in direct numerical simulations. _ (Ug,up)
a”—lal=—~ = . (B].O)
a rhs of Eq.(B10) a—ia; (Ug,up +(v,vp)
0.44 —205-0.79 —1.97-084 Values of drift coefficients given by E¢B10) compare well
0.62 3.5-0.47 3.4—0.47 with those obtained from direct numerical simulatidisee
0.7 1.59-0.80 1.62-0.83 Table 1))

APPENDIX C: TWIST AND WRITHE OF A RIBBON

¢=0— w,t. Since d,=cos@)d,—sin(d)/rdy, the field term We recall the definition of quantities associated with
closed ribbons and some useful mathematical properties for
analyzing the “sproing” bifurcation. In particular, we give a
mathematical definition of the twist and its value in the case
of a uniformly twisted ribbon with an helical central curve.

= —E/2[expli oqt)exp(i $)(dutidguir)+c.cl. The local twist of a ribbon is classically defined [2€]

(B3)

E-Vu can be written in the rotating referential

—Edu=—E[cog ¢+ w;t)d,u—sin( ¢+ wyt)/rd,ul,

d . .\ .
) r=(d—s<p>><p)-t, (&)
As will be seen below, secular terms appear whenEBhe
term on the rhs of Eq(B1) is treated in perturbation. Their \,heref is the unit tangent vector to the mean curve of the

origin is, of course, the induced spiral drift. Anticipating this ribbon, s is the curvilinear coordinate along the mean curve,

henomenon, we suppose that the spiral rotates steadily in | - . . . .
P bp b y andp is the unit vector perpendicular to that curve that di-

rects the line intersecting one of the edges of the ribbon. The
twist measures the spatial rotation rate of the edges of the
X=Xo(t)+1 COK p+ wyt), (B4)  fibbon around the mean curve.
For a closed ribbon, the linking numbky, is the integer
y=Yo(t)+r sin( ¢+ wst), (B5)  that measures the entanglement of the two edges of the rib-
bon. L, is a topological invariant that is constant under a
and continuous deformation of the ribbdas long as it does not
_ _ intersect itself.
Otr 6= dtlxy T @194+ Xodx+Yody - (B6) The linking number is related to the integral of twist by a
_ . formula [40] (which has been popularized by its use in a
The supplementary terms proportionaktpandy, should be  molecular biology context
chosen to cancel the unwanted secular terms. This deter-
mines the spiral drift. Explicitly, we rewrite E4B6) using L =W, + if ds. (C2
S

the frame with coordinatesr (#) that drifts with respect to
the lab frame with coordinatexy). That is,

the rotating coordinates as 2
3y =dilr, g 0194— L2 (Xo— 1Y) eXpli w1t) The writhing numbeW, depends only of the mean curve
X eXp(i ) (3, +id,4I1)+C.c]. (B7) r(s) of the ribbon and is equal to
Substitution of this formula in EqgB1) and (B2) and lin- W =if dsf dslﬁsr(s)x&sr(s’);[r(s)—r(s’)]
earization under the fornu=uo(r,®)+u,expfmt)+c.c., " 4w r=r"|3
v=vo(r,¢)+v,expiwt)+c.c. gives, (C3
up ) . [u, Uy The tangent vector to(s) traces a closed curve on the
(iwl—ﬁ)(v )—1/2(x0—iy0)(v ):—E/Z( 0). unit sphere as(s) goes around the ribbon. The writhing
p t

number is also equal, up to an even integer, to the area en-

(B8) closed on the unit sphere by this closed curve divided by 2

Multiplying by the left eigenvectorl of eigenvalueiw, [41]. . . - .
would show the need for secular terms if we had not intro- AN example of interest is the writhing number of a single

duced the drift terms. Here, however, it simply determinedUn of an helix of radiugk and pitchH (linking the two free

the drift as ends by a non-self-intersecting planar curve to obtain a
closed curvi The tangent vectors curve encloses a spherical
_ _ <at’ut> cap on the unit sphere of normalized area equal to (1
Xo—1Yo=E=—————F7—. (B9) —cos#), where 6 is the angle made by the tangent vector
(U, up + (v, vy) with the vertical axis. This gives the writhing numbep to
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an even integer that is seen to be zero by using the continuity X=Xo(t,2) +r co§ ¢+ wit+ ¢(t,z)], (D1)
of W, and the fact that the writhing number of a straight line
is equal to zerp

y=Yo(t,z)+r sin ¢+ wit+ 4(t,2)]. (D2)
1 The corresponding relations between the time and veigal
Wy =1~ : (C4) derivatives in the two referentials are thus
V1+ (27-rR/H)z

Oy 3= dtlxy T @194+ i d 4+ dXodxt diYody, (D3)
APPENDIX D: LINK WITH AVERAGED EQUATION

In Ref.[16], equations were derived for the motion of the Il 6= lxyt 2 04+ X5+ 30y - (D4)
mean scroll filament and the evolution of twist for a weakly
twisted and weakly curved scroll wave. It was subsequentlyrhese relations can be rewritten usimg+id,=exdi¢
noted[12] that many coefficients in Ref16] original equa-  +iwt+ig(zt)]d +id,/r] and introducingng=Xo—iyo,
tions were identically zero and that only four nontrivial ones
remained to be determined. This approach has recently been 1
extended to take into account fiber rotation anlsotrm. . tlxy=tlr.p— @10 5— Ot dy— =[Bwee ? IOt iY

In this appendix, we find it of some interest to explicitly 2
relate the averaged equations of R¢i6,12 to the compu-

tations that were performed in the main part of the present X (O tiaylnFec, (DS)
paper. One coefficient in the equations of Réf6,17 is

given by the quadratic scroll rotation frequency dependence 1 o _

at small twis{ Eq. (29)]. Unsurprisingly, the three other ones Flxy=0sr o= b 34— E[azwoe"/’*'”l”"/’

are given by the curvature of the rotation and translation

bands around the corresponding symmetry eigenvalues. This X (dp+idglr)+c.cl, (D6)

explicitly confirms that the sproing instability cannot be cap-

tured in the limit considered to derive the averaged equations

since the instability takes place a finite distance away fromg?Z |, = a2 ), s+ (3,)25% 4~ 29,495,
the translation symmetry eigenvalues on the translation

bands. —[ W€ * 1t (G +i95,/r) +c.c]
We provide a simple-minded derivation of the equations 1
Refs.[16,12 using a Cartesian frame instead of the more + Z[(azwo)zez(i“’l”””)[ei"’(r?r+ia¢/r)]2+c.c.]

sophisticated intrinsic mean filament coordinates used in
Ref. [16]. This limits us to consider a weakly inclined fila- 1 1
ment but we can proceed very similarly to the derivation of + —|t9zWo|2V§D— —[afzwoe“f’““’l”“”(&ﬁia¢/r)
spiral drift in Appendix B and the extension to nonisotropic 2 2
or nonhomogeneous medium is straightforwdrdt not con-
sidered herg

We denote the fixed Cartesian coordinates xy (z) and X(0r2¢+i0§s¢)+0-0-]- (D7)
by (r,¢,z) the cylindrical coordinates of a frame rotating at
the 2D spiral frequency and centered on the mean filamentith Egs. (D5) and (D7), the governing reaction-diffusion
position Xq(t,2),Yo(t,2)), equationg1) and (2) become

+C.Cl= o qh gt Ayl O Woe' ¢ et TV

1 o
(at—wla¢—V§D)u—f(u,u)/ezatlpa¢u+E[atwoe'¢+""1‘+"ﬂ(aru+ia¢u/r)+c.c.]+a§£u+(ﬁzw)za§¢u—2az¢ajzu
iptiogt+ip 52 2 1 2.2( 0t +iy)
—[d,wpe (arzu+|a¢zu/r)+c.c.]+z[(azwo) e

. 1 1 o
x[e'¢(ar+i&¢/r)]2u+c.c.]+§|0ZWO|ZV§DU— E[&ﬁzwoe"”*""l”"”(aruﬁ—i&¢u/r)+c.c.]

— 324 3 U+ A I Woe' T Z Ut i ulr) +c.cl, (D8)
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1 o , The last term on the lhs should vanish by rotational invari-
(91— @194)v = 9(U,v) =iy dgv + 5[ FWoe pHimt+iy ance since simply inclining a twisted scroll cannot induce its
drift. This explicitly follows from Eq.(34) since

X +i +cC.C.|. ~ ~
(GrvFidguin)+ecl (9) (ut,e'¢(ar2¢u0+iaid)uolr)):(ut,(1+i(9¢)ut)=0.

For a weakly curved and weakly twisted scroll wave, the rhs (D14
of Egs.(D8) and(D9) can be treated in perturbation starting Equation(D13) (without the last termis the equation of
from the 2D spiral fieldsmo,vo_)._At first.ordgr, the inhomo-  qtion for the mean filament obtained in Ref$6,17. In
geneous rhs are a superposition of time-independent termge |imit considered, the mean filament motion is indepen-
and of terms oscillating at frequencieg and 2w;. One can,  dent of the scroll twist and only depends on the filament
therefore, seeky,v) in perturbation as curvature §2,w,) with a coefficient that gives both the small
(207) k? dependence of the translation bafiés). (23)] and spiral
uj  [Uo Uy Dioogt+ 21y drift in an external fiel{Eq. (B10)].
v v, Tl eon |© te.c The time-independent component( ,v{?) of the first 0
1 correction(D10) obey

4

(ug.wl)) ity Ug_o) (9¢U0 (9¢U0 192 Ug
+ oy | € e+ o], (D10) —r =9 ( )_(92 ( (9.2 ¢¢
v(l Y U(l ) U(lO) b %Uo zz'p 0 ( z'p) 0
where (Y v2Y), (Y u{*Y), and @2 ,0{?) are . ) VipUo D15
time-independent functions characterizing the three different §|aZW0| o | (D15
first-order perturbative corrections.
The 2w, functions obey Again since the rotation mode is an eigenvector with eigen-
2o value zero ofz, this equation can be solved only if
utvy g [e?(d,+id,lr)]%u ~ ~
. 1 r [ 2
l)l t zzV ~ ~ z ~ ~
(Dll) <U¢,U¢>+<U¢,U¢> <U¢,U¢>+<U¢,U¢>
The operatori2w,— £) is invertible and the @, functions 1 <l~J</>’V§Du0>
p w1 1 + =] 9,wp|? =0. (D16)

Ug g+ (@0,

Rotational invariance again implies that the last term on the
left-hand side(lhs) of Eq. (D16) vanishes(since simply in-
clining a scroll wave cannot change its rotation frequercy
explicitly shown below[Eq. (D18)]. The remaining Eg.
(D16) is the equation obtained in Refd.6,17 for the scroll
twist dynamics. The coefficient of3{)? simply describes
the twist dependence of steady scroll rotation frequéEcy
o1 (29)] while the coefficient o2,y governs the smak? de-
s . E Ue| E 2 Ut pendence of the rotation bafEqg. (23) with the subscript
(fwy— L) (01) 2 J{Wo 2 d7Wo 0
vy Ut replaced byg].

_ The computations reported in the present paper permit us
e'¢(a,2¢u0+ i 195>¢Uo/f)) to explicitly evaluate the four real coefficients that appear in

(u(lz“’l) ,0%“V) can be determined. They simply describe the 2
inclined circular core that is viewed as elliptical in the cho-
senx-y coordinatesthese terms are absent in the filament
coordinates used in Rdf16] where in effectd,w is zerg.

On the contrary, the; and constant functions arise from
resonant forcing and can only be determined when solvabil
ity conditions are verified.

The w, functions obey

+ d, azwo(

0 Egs.(D13) and(D16). For example, fom=0.8, b=0.01, €
=0.025, the reported results give
(D12 B
Ui, U
Since {;,vy) is an eigenvector ofZ with eigenvaluei w4, %=0.8842—i0.662,
Eq.(D12) is solvable only if its rhs has no component on this (Ug,up) +(vy,0y)
eigenvector. More explicitly, one obtains by multiplying Eg. ~
(D12) by the associated left eigenvector, (Ug,Ug) —0578
- <U¢,U¢>+<U¢,U¢>
FWg— 32 W, _uuy
— _ = ~ 2
@ u)+ (1) (U, %5 4u0)

= ~ =—0.7203. (D17)
<U¢,U¢>+<U¢,U¢>
More generally, the two coefficients in E¢P16) do not

change sign as one traverses the different regions of the
(D13 phase diagram: a small twist increases the scroll rotation fre-

(Uy, €97 Uoti95,4u0/1))

+ d, I, W = =
e (Ug, U+ (v, vy)
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guency and a small modulation in tlzedirection increases <ﬁ v2 4 y=0. (D18)

the stability of the rotation band modes. The complex coef- ¢ V2pUo

ficient of Eq.(D193) is directly linked to the scroll wave line This is a simple consequence of the transformation property

tension stability/instability and its real part change sign a%f the reaction-diffusion equatiors) and(6) under dilation.

2D spiral drift. Namely, Uo(r(1+ 7),d),vo(r(1+ 7),¢)) is a solution of
Finally, it may be worth comparing the above derivation Egs. (5) and (6) with V3, replaced by 1/(¥ 7)?V3, . Ex-

to that of Ref.[16]. Since the Ihs of Eq(D10) is a superpo- panding for »<1 gives the infinitesimal version of this

sition of terms with different time dependences, this is alsaransformation

the case of its solution and many coefficients formally intro- )

duced in Ref[16] do not even appear in our derivation, as rdlo| VapUo

previously noted in Refl12] (in a slightly different formu- N o |’

lation). On the other side, we have chosen a simple param-

etrization for which rotational invariance is not manifest, in Which can also be directly checked by differentiating E&.

contrast to Ref[12]. This forces us to explicitly show that and(6) with respect ta. The multiplication of Eq(D19) on

coefficients that do not appear in Rgf2] vanish. both sides bqu¢,5 ), the left eigenvector ofZ of eigen-
We conclude by showing that indeed value zero, gives the desired ident{fy18).

D19
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